Journal of Radioanalytical and Nuclear Chemistry

, Volume 133, Issue 2, pp 359–376 | Cite as

Factors affecting interaction of radiocesium with freshwater solids

I. pH, composition of water and the solids
  • P. Beneš
  • P. Lam Ramos
  • R. Poliak


The paper aims at the analysis of principal factors affecting the interaction of radiocesium with freshwater solids, important for the migration of radiocesium in rivers. Uptake of radiocesium by bottom sediments and suspended solids from small streams was studied as a function of pH and composition of aqueous phase, of the concentration of cesium in water and of the composition of freshwater solids, using laboratory model experiments. pH had negligible effect on the uptake in the pH range 5–9, the uptake decreased at pH values less than 3–5 depending on the nature and concentration of the solids. Addition of cations suppressed the uptake in the order K+>Na+>Ca2+, the suppression began at 0.001, 0.01 and 0.1−3 concentration, respectively. Increase in cesium concentration in water caused a decrease of radiocesium uptake, but at very low concentrations of cesium combined with higher concentration of sediment (2g·dm−3) the uptake was independent of cesium concentration. Removal of carbonates, oxidic coatings and organic matter from a sediment did not affect the sorption properties of the sediment. The nature of the effects found confirms that cesium is sorbed mainly by clay components of freshwater solids. Results obtained are compared with literature data and conclusions are drawn on the importance of the factors studied for modelling of radiocesium migration in rivers.


Clay Migration Organic Matter Aqueous Phase Model Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IAEA, Sediments and Pollution in Waterways — General Considerations. IAEA —TECDOC-302, International Atomic Energy Agency, Vienna 1984.Google Scholar
  2. 2.
    Y. ONISHI, et al., Critical Review: Radionuclide Transport, Sediment Transport and Water Quality Mathematical Modeling and Radionuclide Adsorption/Desorption Mechanisms. NUREG/CR-1322, PNL Seattle 1981.Google Scholar
  3. 3.
    A. SAAS, Processus de sorption et de desorption des radioisotopes sur les materiaux solides a partir des rejets liquides et des depots atmospheriques. CEA-R-4952, CEN Cadarache 1979.Google Scholar
  4. 4.
    Y. A. YOUSEF, A. KUDO, E. F. GLOYNA, Radioactivity Transport in Water-Summary Report. ORO-490-20, 1970.Google Scholar
  5. 5.
    A. VERTACNIK, P. STROHAL, S. LULIC, Health Phys., 36 (1979) 491.PubMedGoogle Scholar
  6. 6.
    W. R. SCHELL et al., Distribution Coefficients for Radionuclides in Aquatic Environments, NUREG/CR-0803, 1980.Google Scholar
  7. 7.
    L. W. ZELAZNY et al., Effect of Temperature and Hydroxy-Al Interlayers on Cs Selectivity and Fixation in River Suspensions and Soil. Final Report. ORO-4851-2, 1978.Google Scholar
  8. 8.
    K. GARDER, O. SKULBERG, Inter. J. Air Water Pollut., 8 (1964) 229.Google Scholar
  9. 9.
    T. KAKABATA, J. Radiation. Res., 8 (1967) 20.Google Scholar
  10. 10.
    M. A. MEEUSEN, G. J. WILLEMS, C. J. DUKANTER, J. Pharm. Belg., 30 (1975) 82.PubMedGoogle Scholar
  11. 11.
    S. J. JINKS, M. E. WRENN, Radiocesium Transport in the Hudson River Estuary, In: J. N. STANNARD, M. W. MILLER, Environmental Toxicity of Aquatic Radionuclides: Models and Mechanisms. Ann Arbor Sci., Ann Arbor 1976, p. 207.Google Scholar
  12. 12.
    P. LINSALATA et al., Environ. Geol. Water Sci., 7 (1985) 193.Google Scholar
  13. 13.
    H. SCHNEIDER, W. BLOCK, Gas-wasserfach., 109 (1981) 1410.Google Scholar
  14. 14.
    J. R. CLAYTON, Jr., T. T. SIBLEY, W. R. SCHELL, Bull. Environ. Contam. Toxicol., 28 (1982) 409.PubMedGoogle Scholar
  15. 15.
    H. LANG, C. WOLFRUM, H. MOSER, Dependence of radionuclide sorption on concentration (in German), in: Chemistry and Migration Behaviour of the Actinides and Fission Products in Natural Aquatic Systems PTB-SE-14, 1986, p. 244.Google Scholar
  16. 16.
    K. A. MAHMOUD et al., Isotope Radiat. Res., 1 (1968) 9.Google Scholar
  17. 17.
    M. J. MADRUGA, M. C. VAZ CARREIRO, A. O. BETTENCOURT, Experimental study of134Cs behaviour in freshwater sediments. In: Impact des accidents d'origine nucléaire sur l'environment. IVe Symposium International de Radioecologie de Cadarache, CEN Cadarache, 14–18 Mars 1988, Tome 1, C 51–59.Google Scholar
  18. 18.
    E. A. JENNE, J. S. WAHLBERG, Role of Certain Stream-Sediment Components in Radioion Sorption. USGS Professional Paper 433-F, 1968.Google Scholar
  19. 19.
    T. F. LOMENICK, T. TAMURA, Soil Sci. Soc. Amer. Proc., 29 (1965) 383.Google Scholar
  20. 20.
    A. B. MAC KENZIE, Techniques for Identifying Transuranic Speciation in Aquatic Environments, IAEA, Vienna 1981, p. 257.Google Scholar
  21. 21.
    B. P. SPALDING, T. E. GERLING, Association of Radionuclides with Streambed Sediments in White Oak Creek Watershed. ORNL/TM-6895.Google Scholar
  22. 22.
    T. E. CERLING, R. R. TURNER, Geochim. Cosmochim. Acta, 46 (1982) 1333.Google Scholar
  23. 23.
    D. W. EVANS, J. J. ALBERTS, R. A. CLARK III, Geochim. Cosmochim. Acta, 47 (1983) 1041.Google Scholar
  24. 24.
    E. BROUWER et al., J. Phys. Chem., 87 (1983) 1213.Google Scholar
  25. 25.
    G. G. EICHHOLZ, T. F. CRAFT, A. N. GALLI, Geochim. Cosmochim. Acta, 31 (1967) 737.Google Scholar
  26. 26.
    U. S. CLANTON, Sorption and Release of89Sr and137Cs by Recent Sediments of Guadalupe River of Texas. Thesis, University of Texas, Austin 1968.Google Scholar
  27. 27.
    I. L. BRISBIN et al., Health Phys., 27 (1974) 19.PubMedGoogle Scholar
  28. 28.
    J. FAURE, Role de la matiere organique d'un cours d'eau vis-a-vis de la pollution radioactive. Thée, Université de Science et Techniques du Languedoc, 1974.Google Scholar
  29. 29.
    P. E. KEPKAY, J. Environ. Radioact., 3 (1986) 85.Google Scholar
  30. 30.
    M. Y. CHEBOTINA, V. F. BOCHENIN, Hydrobiol. J. (Engl. Transl.), 17 (1981) 77.Google Scholar
  31. 31.
    A. TESSIER, P. G. C. CAMPBELL, M. BISSON, Anal. Chem., 51 (1979) 844.Google Scholar
  32. 32.
    P. BENEŠ, M. JURÁK, M. ČERNIK, J. Radioanal. Nucl. Chem., 51 (1979) 844.Google Scholar
  33. 33.
    P. BENEŠ, M. JURÁK, M. KUNCOVÁ, J. Radioanal. Nucl. Chem., 132 (1989) 209.Google Scholar
  34. 34.
    P. BENEŠ et al., J. Radioanal. Nucl. Chem., 125 (1988) 295.Google Scholar
  35. 35.
    P. BENEŠ, P. STREJC, J. Radioanal. Nucl. Chem., 99 (1986) 407.Google Scholar
  36. 36.
    K. H. WEDEPOHL (ed.), Handbook of Geochemistry, Springer-Verlag, Berlin 1970, pp. 11-I-1, 19-I-1, 55-I-1.Google Scholar
  37. 37.
    E. A. JENNE, Trace element sorption by sediments and soils-sites and processes. In: Symposium on Molybdenum in the Environment, Vol. 2, W. CHAPELL and K. PETERSON (Eds), M. DEKKER, New York 1977, p. 425.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • P. Beneš
    • 1
  • P. Lam Ramos
    • 1
  • R. Poliak
    • 1
  1. 1.Department of Nuclear ChemistryTechnical University of PraguePrague 1Czechoslovakia

Personalised recommendations