Advertisement

Annals of Operations Research

, Volume 40, Issue 1, pp 355–369 | Cite as

On destination optimality in asymmetric distance Fermat-Weber problems

  • Frank Plastria
Article

Abstract

This paper introduces skewed norms, i.e. norms perturbed by a linear function, which are useful for modelling asymmetric distance measures. The Fermat-Weber problem with mixed skewed norms is then considered. Using subdifferential calculus we derive exact conditions for a destination point to be optimal, thereby correcting and completing some recent work on asymmetric distance location problems. Finally the classical dominance theorem is generalized to Fermat-Weber problems with a fixed skewed norm.

Keywords

Optimality conditions continous location problems asymmetric distance convex analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Chen, An improved method for the solution of the problem of location on an inclined plane, RAIRO, Recherche Operationelle/Operations Research 25(1991)45–53.Google Scholar
  2. [2]
    Z. Drezner and G.O. Wesolowsky, The asymmetric distance location problem, Transp. Sci. 23(1989)201–207.CrossRefGoogle Scholar
  3. [3]
    R. Durier and C. Michelot, Geometrical properties of the Fermat-Weber problem, Europ. J. Oper. Res. 20(1985)332–343.CrossRefGoogle Scholar
  4. [4]
    R.L. Francis and J.A. White,Facility Layout and Location (Prentice-Hall, Englewood Cliffs, NJ, 1974).Google Scholar
  5. [5]
    M.J. Hodgson, R.T. Wong and J. Honsaker, Thep-centroid problem on an inclined plane, Oper. Res. 35(1987)221–233.CrossRefGoogle Scholar
  6. [6]
    H. Juel and R.F. Love, Fixed point optimality criteria for the Weber problem with arbitrary norms, J. Oper. Res. Soc. 32(1981)891–897.CrossRefGoogle Scholar
  7. [7]
    H.W. Kuhn and E. Kuenne, An efficient algorithm for the numerical solution of the generalised Weber problem in spatial economics, J. Regional Sci. 4(1962)21–33.CrossRefGoogle Scholar
  8. [8]
    R.F. Love and J.G. Morris, Modelling inter-city road distances by mathematical functions, Oper. Res. Quarterly 23(1972)61–71.CrossRefGoogle Scholar
  9. [9]
    H. Minkowski,Theorie der konvexen körper, Gesammelte Abhandlungen, Vol. 2 (Teubner, Berlin, 1911).Google Scholar
  10. [10]
    J.G. Morris, Convergence of the Weiszfeld algorithm for Weber problems using a generalized “distance” function, Oper. Res. 29(1981)37–48.CrossRefGoogle Scholar
  11. [11]
    F. Plastria, A note on “Fixed point optimality criteria for the location problem with arbitrary norms”, J. Oper. Res. Soc. 34(1983)164–165.CrossRefGoogle Scholar
  12. [12]
    R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).Google Scholar
  13. (13).
    J.E. Ward and R.E. Wendell, Using block norms for location modelling, Oper. Res. 33(1985)1074–1090.CrossRefGoogle Scholar
  14. [14]
    A. Weber, Über den Standort der Industrien, Tübingen [transl.: C.J. Friedrich,Alfred Weber's Theory of the Location of Industries (Chicago University Press, Chicago, 1929)].Google Scholar
  15. [15]
    E. Weiszfeld, Sur le point pour lequel la somme des distances den points donnés est minimum, Tohoku Math. J. 43(1937)355–386.Google Scholar
  16. [16]
    C. Witzgall, Optimal location of a central facility, mathematical models and concepts, Report 8388, US Department of Commerce, National Bureau of Standards (1964).Google Scholar
  17. [17]
    C. Witzgall, On convex metrics, J. Res. NBS, B: Math. and Math. Phys. 69B(1965)175–177.Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1992

Authors and Affiliations

  • Frank Plastria
    • 1
  1. 1.Research Center in Industrial LocationVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations