Advertisement

Sum peak in gamma-energy spectra of NaI(T1) detectors

  • Sh. S. Al-Dargazelli
  • A. Sh. Mahmood
Article

Abstract

The factors affecting the sum peak of NaI(T1) detectors has been studied experimentally, namely the intrinsic photopeak efficiency, the geometry factor, the energy and the intensity of the incident photon beam. Several radioactive sources were used for the measurement of the intrinsic photopeak efficiency of the two NaI(T1) detectors used in this work (51 mm × 51 mm and 76 mm × 76 mm).88Y,60Co and22Na, were used for sum peak determination. Different source to detector distances, to produce different values of geometry factor, and different source activities were used. The effect of geometry on the intrinsic photopeak efficiency is very pronounced at high geometry factor. The linear relation between the relative intensity of the sum peak and both the geometry factor and the intensity of the incident photons, facilitate the quantitative prediction of the sum effect on the energy response function of NaI(T1) detectors.

Keywords

Inorganic Chemistry Relative Intensity Response Function Linear Relation Incident Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. AL-DARGAZELLI et al. J. Radioanal. Nucl. Chem., 131 (1988) 223.Google Scholar
  2. 2.
    C. PAPASTEFANOU et al., Health Phys., 50 (1986) 281.PubMedGoogle Scholar
  3. 3.
    U. BOTTIGLI et al., J. Nucl. Med., 29 (1985) 221.Google Scholar
  4. 4.
    T. TOJO, Nucl. Instr. Methods, 205 (1983) 517.Google Scholar
  5. 5.
    G. CHARPAK, F. SAULI, Annu. Rev. Nucl. Part. Sci., 34 (1984) 285.Google Scholar
  6. 6.
    M. TAIATI et al., Nucl. Instr. Methods, 211 (1983) 135.Google Scholar
  7. 7.
    P. CORVISIERO et al., Nucl. Instr. Methods, 185 (1981) 291.Google Scholar
  8. 8.
    R. B. MURRAY, A. MEYER, Phys. Rev., 122 (1961) 815.Google Scholar
  9. 9.
    S. TOMINAGA, Nucl. Instr. Methods, 205 (1983) 485.Google Scholar
  10. 10.
    S. TOMINAGA, Nucl. Instr. Methods, 215 (1983) 231.Google Scholar
  11. 11.
    R. P. GARDNER et al., Nucl. Instr. Methods. Phys. Res. A 242 (1986) 399.Google Scholar
  12. 12.
    Y. JIN et al., Nucl. Instr. Methods, Phys. Res., A242 (1986) 416.Google Scholar
  13. 13.
    H. G. DEVARE, P. N. TANDON, Nucl. Instr. Methods, 22 (1963) 253.Google Scholar
  14. 14.
    R. J. GEHRKE et al., Nucl. Instr. Methods, 147 (1977) 405.Google Scholar
  15. 15.
    K. DEBERTIN, U. SCHOTZIG, Nucl. Instr. Methods, 158 (1979) 471.Google Scholar
  16. 16.
    Z. SUJKOWSKI, S. Y. VAN DER WERF, Nucl. Instr. Methods, 171 (1980) 445.Google Scholar
  17. 17.
    P. QUITTNER, Gamma-Ray Spectroscopy, Akadémiai Kiadó, Budapest, 1972.Google Scholar
  18. 18.
    G. F. KNOLL, Radiation Detection and Measurement, John Wiley & Sons, New York, 1979.Google Scholar
  19. 19.
    R. M. GREEN, R. J. Finn Nucl. Instr. Methods, 34 (1965) 72.Google Scholar
  20. 20.
    F. A. JASSIM, M. Sc. Thesis, Baghdad University, 1984 (unpublished).Google Scholar
  21. 21.
    M. M. ELIAS, M. Sc. Thesis, Baghdad University, 1985 (unpublished).Google Scholar
  22. 22.
    G. G. LUTHER et al., Nucl. Instr. Methods, Phys. Res. A 246 (1986) 537.Google Scholar
  23. 23.
    F. H. FAHEY et al., Med. Phys., 14 (1978) 115.Google Scholar
  24. 24.
    S. S. AL-DARGAZELLI, M. M. ELIAS, Int. J. Appl. Radiation Isotopes, 40 (1989) 421.Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • Sh. S. Al-Dargazelli
    • 1
  • A. Sh. Mahmood
    • 1
  1. 1.Physics Department, College of ScienceBaghdad UniversityJadriah-Baghdad(Iraq)

Personalised recommendations