Radiolysis of p-benzoquinone solutions

II. Oxygenated solutions
  • A. A. Al-Suhybani
  • G. Hughes


The γ-radiolysis of p-benzoquinone (Q) at different concentrations of H2SO4, Q, O2 and Cl are p-hydroquinone (H2 Q), 2-hydroxy-p-benzoquinone (2-Q-OH) and H2O2. The effect of Cl on yields is similar to its effect in deaerated solutions. The yields of H2Q and 2-Q-Oh are lower than in deaerated solutions. In the presence of simple aliphatic alcohols, a carbonyl compound is also measured in addition to those mentioned above. This system is found to be more complex than in deaerated solutions. Q and O2 were found to compete for the radical R1 R2 COH and good agreement was obtained between observed and reported rate coefficients of the reactions involved. There is some evidence that at lower pH, alcohol peroxy radicals are also able to undergo electron transfer with quinone.


Alcohol H2O2 Carbonyl Electron Transfer H2SO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. VERMEIL, L. SALMON, Compt. Rend., 249 (1959) 268.Google Scholar
  2. 2.
    C. VERMEIL, G. ROQUET, J. Chem. Phys., 60 (1963) 659.Google Scholar
  3. 3.
    A. A. AL-SUHYBANI, G. HUGHES, J. Chem. Soc. Pak., in press.Google Scholar
  4. 4.
    A. A. AL-SUHYBANI, G. HUGHES, Z. Phys. Chem. Neue Folge, 141 (1984) 229.Google Scholar
  5. 5.
    A. A. AL-SUHYBANI, G. HUGHES, Isotopenpraxis, 21 (1985) 277.Google Scholar
  6. 6.
    A. A. AL-SUHYBANI, G. HUGHES, J. Radioanal. Nucl. Chem., 92 (1985) 93.Google Scholar
  7. 7.
    A. A. AL-SUHYBANI, G. HUGHES, J. Radioanal. Nucl. Chem., 98 (1986) 17.Google Scholar
  8. 8.
    G. DOBSON, G. HUGHES, Trans. Faraday Soc., 57 (1961) 1117.Google Scholar
  9. 9.
    J. YAMAZAKI, L. H. PIETT, J. Amer. Chem. Soc., 87 (1965) 986.Google Scholar
  10. 10.
    K. A. C. ELLIOTT, Biochem. J., 26 (1932) 1281.Google Scholar
  11. 11.
    I. YAMAZAKI, J. Biol. Chem., 235 (1960) 2444.PubMedGoogle Scholar
  12. 12.
    Yu. Yu. LURE'Z, Z. V. NIKOLAEVA, Anal. Abstr., 2 (1955) Abstr. No. 2872.Google Scholar
  13. 13.
    N. G. SHAFRAN, V. P. KHRUPKINA, Zh. A. MARKUZE, Z. P. NAZAROVA, Anal. Abstr., 20 (1971) Abst. No. 1729.Google Scholar
  14. 14.
    G. R. A. JOHNSON, G. SCHOLES, Analyst, 79 (1954) 217.Google Scholar
  15. 15.
    K. B. PATEL, R. L. WILSON, J. Chem. Soc. Faraday Trans. I, 69 (1973) 814.Google Scholar
  16. 16.
    T. J. FELLOWS, G. HAUGHES, J. Chem. Soc., Perkin II, (1972) 1182.Google Scholar
  17. 17.
    M. SIMIC, E. HAYON, Biophys. Res. Commun., 50 (1973) 364.Google Scholar
  18. 18.
    J. RABANI, D. KLUG-ROTH, A. HENGLEIN, J. Phys. Chem., 78 (1974) 2089.Google Scholar
  19. 19.
    K. STOCKHAUSEN, A. HENGLEIN, G. BECLC, Ber. Bunsenges. Phys. Chem., 73 (1969) 567.Google Scholar
  20. 20.
    K. STOCKHANSUN, A. FOITIK, A. HENGTEIN, Ber. Bunsenges. Phys. Chem., 74 (1970) 34.Google Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • A. A. Al-Suhybani
    • 1
  • G. Hughes
    • 2
  1. 1.Chemistry Department, Science CollegeKing Saud University(Saudi Arabia)
  2. 2.Chemistry DepartmentUniversity of LiverpoolLiverpool(UK)

Personalised recommendations