Skip to main content

Advertisement

Log in

Soluble and resistant proteoglycans in epiphyseal plate cartilage

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The proteoglycans of cartilage occur in a form which is readily extracted (soluble) and in form which is relatively difficult to extract (resistant). Following the extraction of the soluble proteoglycans from slices of epiphyses from young rats, the distribution of the resistant proteoglycans are visualized by staining with toluidine blue. Daily quantitative recoveries of uronic acid over 7 days are used as an index of the rate and completeness of extraction. In contrast to other cartilages (nasal, costal, ear, articular) in which the resistant proteoglycans are restricted to perilacunar localizations, the resistant proteoglycans in epiphyseal plate extend across the plate as a continuous stratum and occupy extraterritorial regions. This stratum of resistant proteoglycans is difficult to identify with a specific zone in the plates of young individuals, because of primitive columniation. In more highly organized, older human and porcine epiphyseal plates, however, the stratum is clearly seen at the junction of the zones of resting and proliferating chondrocytes. It dips down a short distance between the columns, disappears and then reappears again at the level of the zone of provisional calcification. These observations are discussed in the context of endochondral growth.

Résumé

Les protéoglycanes du cartilage se présentent sous une forme que l'on peut extraire facilement (soluble) et sous une formule difficile à extraire (résistante). Après extraction de protéoglycanes de coupes d'épiphyses de jeunes rats, le répartition des protéoglycanes résistantes est visualisée par coloration au bleu de toluidine. La détermination quantitative quotidienne d' acide uronique pendant 7 jours est utilisée comme indice de la vitesse et de l'efficacité de l'extraction. Contrairement à d'autres cartilages (nasal, costal, oreille, articulaire) où les protéoglycanes résistantes sont limitées à des régions périlacunaires, les protéoglycanes résistantes de la métaphyse s'étendent au-delà sous forme d'une couche continue et occupent des régions extra-territoriales. Cette couche de protéoglycanes résistantes est difficile d'identifier avec une zone spécifique dans la métaphyse de jeunes individus, par suite d'un alignement primitif. Cependant au niveau de métaphyses humaines ou de porcs plus âgés, cette couche est nettement visible à la jonction des zones de chondrocytes au repos et en division. Elle s'étend sur une courte distance entre les cellules sériées, disparait et réapparait à nouveau au niveau de la zone de calcification temporaire. Ces résultats sont discutés en fonction de la croissance enchondrale.

Zusammenfassung

Die Knorpelproteoglycane kommen in einer leicht extrahierbaren (löslichen) und in einer relativ schwer extrahierbaren (resistenten) Form vor. Nach der Extraktion der löslichen Proteoglycane aus Epiphysenschnitten junger Ratten wird die Verteilung der resistenten Proteoglycane durch Toluidinblau-Färbung aufgezeigt. Als Index für die Geschwindigkeit und Vollständigkeit der Extraktion wird die tägliche quantitative Ausbeute von Uronsäure während 7 Tagen verwendet. Im Gegensatz zu anderen Knorpelarten (Nasen-, Rippen-, Ohren- und Gelenkknorpel), bei welchen die resistenten Proteoglycane nur perilacunär vorkommen, gehen die resistenten Proteoglycane der Epiphysenplatte über die Platte als zusammenhängende Schicht hinaus und treten in extraterritorialen Bereichen auf. Diese Schicht resistenter Proteoglycane kann in den Platten junger Individuen wegen der ursprünglichen Säulenbildung nur schwierig als eine bestimmte Zone identifiziert werden. In höher organisierten, älteren Epiphysenplatten des Menschen und des Schweines ist die Schicht jedoch deutlich an der Berührungsstelle der Zonen ruhender und proliferierender Chondrocyten ersichtlich. Sie setzt sich eine kurze Strecke zwischen den Säulen fort, verschwindet dann aber und erscheint wieder auf der Höhe der vorläufigen Verkalkungszone. Diese Beobachtungen werden mit dem endochondralen Wachstum in Zusammenhang gebracht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, B., Hoffman, P., Meyer, K.: The O-serine linkage in peptides of chondroitin 4- or 6 sulphate. J. biol. Chem.240, 156–167 (1965)

    PubMed  Google Scholar 

  2. Anderson, H. C., Sajdera, S. W.: The fine structure of bovine nasal cartilage. Extraction as a technique to study proteoglycans and collagen in cartilage matrix. J. Cell Biol.49, 650–663 (1971)

    PubMed  Google Scholar 

  3. Bowness, J. M., Jacobs, M.: Chondroitin sulfate changes in puppy rib cartilage during the period of calcification. Canad. J. Biochem.46, 63–67 (1968)

    Google Scholar 

  4. Campo, R. D.: Protein-polysaccharides of cartilage and bone in health and disease. Clin. Orthop.68, 182–209 (1970)

    PubMed  Google Scholar 

  5. Campo, R. D., Bielen, R. J., Hetherington, J.: Metabolic studies on the protein-polysaccharides of cartilage. Biochim. biophys. Acta (Amst.)261, 136–142 (1972)

    Google Scholar 

  6. Campo, R. D., Phillips, S. J.: Electron microscopic visualization of proteoglycans and collagen in bovine costal cartilage. Calcif. Tiss. Res.13, 83–92 (1973)

    Google Scholar 

  7. Campo, R. D., Tourtellotte, C. D.: The composition of bovine cartilage and bone. Biochim. biophys. Acta (Amst.)141, 614–624 (1967)

    Google Scholar 

  8. Campo, R. D., Tourtellotte, C. D., Bielen, R. J.: The protein-polysaccharides of articular, epiphyseal plate and costal cartilages. Biochim. biophys. Acta (Amst.)177, 501–511 (1969)

    Google Scholar 

  9. Collins, D. H., McElligott, T. F.: Sulphate (35SO4) uptake by chondrocytes in relation to histological changes in osteoarthritic human articular cartilage. Ann. rheum. Dis.19, 318–330 (1960)

    PubMed  Google Scholar 

  10. Dahl, L. K.: A simple and sensitive histochemical method for calcium. Proc. Soc. exp. Biol. (N.Y.)80, 474–479 (1952)

    Google Scholar 

  11. Dische, Z.: A new specific color reaction of hexuronic acids. J. biol. Chem.167, 189–198 (1947)

    Google Scholar 

  12. Dodds, G. S.: Row formation and other types of arrangement of cartilage cells in endochondral ossification. Anat. Rec.46, 385–399 (1930)

    Google Scholar 

  13. Eisenstein, R., Sorgente, N., Kuettner, K. E.: Organization of extracellular matrix in epiphyseal growth plate. Amer. J. Path.65, 515–528 (1971)

    PubMed  Google Scholar 

  14. Glimcher, M. J., Seyer, J., Brickley, D. M.: The solubilization of collagena nd protein-polysaccharides from the developing cartilage of lathyritic chicks. Biochem. J.115, 923–926 (1969)

    PubMed  Google Scholar 

  15. Gregory, J. D., Laurent, T. C., Rodén, L.: Enzymatic degradation of chondromucoprotein. J. biol. Chem.239, 3312–3320 (1964)

    PubMed  Google Scholar 

  16. Gregory, J. D., Rodén, L.: Isolation of keratosulfate from chondromucoprotein of bovine nasal septa. Biochem. biophys. Res. Commun.5, 430–434 (1961)

    Google Scholar 

  17. Jervis, G. A.: In: Textbook of medicine, vol. II, p. 1583. Philadelphia: W. B. Saunders Co. 1963

    Google Scholar 

  18. Joftes, D. L.: Liquid emulsion autoradiography with tritium. Lab. Invest.8, 131–138 (1959)

    PubMed  Google Scholar 

  19. Kalayjian, D. B., Cooper, R. R.: Osteogenesis of the epiphysis. A light and electron microsscopic study. Clin. Orthop.85, 242–256 (1972)

    PubMed  Google Scholar 

  20. Lucy, J. A., Dingle, J. T., Fell, H. B.: Studies on the mode of action of excess of vitamin A. 2. A possible role of intracellular proteases in the degradation of cartilage matrix. Biochem. J.79, 500–508 (1961)

    PubMed  Google Scholar 

  21. Malawista, I., Schubert, M.: Chondromucoprotein; new extraction method and alkaline degradation. J. biol. Chem.230, 535–544 (1958)

    PubMed  Google Scholar 

  22. Mazia, D., Brewer, P. A., Alfert, M.: The cytochemical staining and measurement of protein with mercuric bromphenol blue. Biol. Bull.104, 57–67 (1953)

    Google Scholar 

  23. Pal, S., Schubert, M.: The action of hydroxylamine on the proteinpolysaccharides of cartilage. J. biol. Chem.240, 3245–3248 (1965)

    PubMed  Google Scholar 

  24. Pearse, A. G. E.: Histochemistry, theoretical and applied, p. 917. Boston: Little, Brown & Co. 1961

    Google Scholar 

  25. Ponseti, I. V., Shepard, R. S.: Lesions of the skeleton and of other mesodermal tissues in rats fed sweet-pea (Lathyrus odoratus) seeds. J. Bone Jt Surg. A36, 1031–1058 (1954)

    Google Scholar 

  26. Prockop, D. J., Udenfriend, S.: A specific method for the analysis of hydroxyproline in tissues and urine. Analyt. Biochem.1, 228–239 (1960)

    PubMed  Google Scholar 

  27. Quintarelli, G., Sajdera, S., Dziewiatkowski, D. D.: Modifications of connective tissue matrices by an enzyme extracted from cartilage. Histochemie15, 1–20 (1968)

    PubMed  Google Scholar 

  28. Ramamurti, P., Taylor, H. E.: Histochemical studies on the evolution and regression of skeletal deformities due to beta-aminopropionitril (βAPN). Lab. Invest7, 115–125 (1958)

    PubMed  Google Scholar 

  29. Rosenberg, L., Johnson, B., Schubert, B.: The proteinpolysaccharides of human costal cartilage. J. clin. Invest.48, 543–552 (1969)

    PubMed  Google Scholar 

  30. Sajdera, S. W., Hascall, V. C.: Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J. biol. Chem.244, 77–87 (1969)

    PubMed  Google Scholar 

  31. Shatton, J., Schubert, M.: Isolation of a mucoprotein from cartilage. J. biol. Chem.211, 565–573 (1954)

    PubMed  Google Scholar 

  32. Szirmai, J. A.: Structure of cartilage. In book: Aging of connective and skeletal tissue, ed. by A. Engel and T. Larsson, p. 163–184. Stockholm: Nordiska Bokhandelns Förlag 1969

    Google Scholar 

  33. Vittur, F., Pugliarello, M. C., de Bernard, B.: Chemical modifications of cartilage matrix during endochondral calcification. Experientia (Basel)27, 126–127 (1971)

    Google Scholar 

  34. Weiss, C., Rosenberg, L., Helfet, A. J.: An ultrastructural study of normal young adult human articular cartilage. J. Bone Jt Surg. A50, 663–674 (1968)

    Google Scholar 

  35. Wuthier, R. E.: A zonal analysis of inorganic and organic constituents of the epiphysis during endochondral calcification. Calcif. Tiss. Res.4, 20–38 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campo, R.D. Soluble and resistant proteoglycans in epiphyseal plate cartilage. Calc. Tis Res. 14, 105–119 (1974). https://doi.org/10.1007/BF02060287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02060287

Key words

Navigation