Advertisement

Hyperfine Interactions

, Volume 23, Issue 1, pp 1–16 | Cite as

On the interpretation of nuclear quadrupole interaction data for rare-earth nuclei at low symmetry sites

  • G. A. Stewart
Article

Abstract

Expressions are given for all tensor components of the lattice- and 4f-shell electric field gradient contributions at a rare-earth nucleus and the influence of local symmetry is discussed. To demonstrate that a full tensor analysis is essential for monoclinic symmetry, the quadrupole splitting data for169Tm in Tm2O3 are re-analyzed, resulting in significantly different shielding factorsRQ and Υ.

Keywords

Field Gradient Quadrupole Splitting Tensor Component Electric Field Gradient Local Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.G. Barnes, R.L. Mössbauer, E. Kankeleit and J.M. Poindexter, Phys. Rev. A136(1964)175.Google Scholar
  2. [2]
    B. Bleaney, G.J. Bowden, J.M. Cadogan, R.K. Day and J.B. Dunlop, J. Phys. F12(1982)795.Google Scholar
  3. [3]
    R.A.B. Devine and Y. Berthier, J. Magn. Magn. Mat. 25(1981)135.Google Scholar
  4. [4]
    G.A. Stewart and G. Wortmann, Phys. Lett. 85A(1981)185;Google Scholar
  5. [4a]
    W. Thal, Diplom Thesis (Freie UniversitÄt Berlin, 1984).Google Scholar
  6. [5]
    J.L. Prather, N.B.S. (U.S.) Monograph 19 (1961).Google Scholar
  7. [6]
    M.T. Hutchings, Solid State Phys. 16(1964)227.Google Scholar
  8. [7]
    D.J. Newman, Adv. Phys. 20(1971)197;Google Scholar
  9. [7a]
    M. Faucher and D. Garcia, Phys. Rev. B26(1982)5451.Google Scholar
  10. [8]
    U. Walter and E. Holland-Moritz, Z. Phys. B45(1981)107;Google Scholar
  11. [8a]
    B. Barbara, Y. Berthier, R.A.B. Devine and M.F. Rossignol, J. Phys. F12(1982)2625.Google Scholar
  12. [9]
    K.W.H. Stevens, Proc. Phys. Soc. (London) A65(1952)209.Google Scholar
  13. [10]
    A. Abragam and B. Bleaney,Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970) Table 20, p. 874.Google Scholar
  14. [11]
    R. Orbach, Proc. Roy. Soc. (London) A264(1961)458.Google Scholar
  15. [12]
    Q.H.F. Vrehen and J. Volger, Physica 31(1965)845.Google Scholar
  16. [13]
    G.A. Stewart, G. Kalkowski and G. Wortmann, J. Less Common Metals 73(1980)291.Google Scholar
  17. [14]
    J.B. Gruber, W.F. Krupke and J.M. Poindexter, J. Chem. Phys. 41(1964)3363.Google Scholar
  18. [15]
    M. Faucher and J. Dexpert-Ghys, Phys. Rev. B24(1981)3138.Google Scholar
  19. [16]
    R.P. Gupta and S.K. Sen, Phys. Rev. A7(1973)850.Google Scholar
  20. [17]
    A.J. Freeman and J.P. Desclaux, J. Magn. Magn. Mat. 12(1979)11.Google Scholar
  21. [18]
    J.G. Stevens and V.E. Stevens, eds.,1976 Mössbauer Effect Data Index (Plenum, New York).Google Scholar
  22. [19]
    B.D. Dunlap, in:Mössbauer Effect Methodology, Vol. 7, ed. I.J. Gruverman (Plenum, New York, 1971) p. 123.Google Scholar
  23. [20]
    M.C. Olesen and B. Elbek, Nucl. Phys. 15(1960)134.Google Scholar
  24. [21]
    G. Wortmann, private communication.Google Scholar
  25. [22]
    B.G. Wybourne,Spectroscopic Properties of Rare Earths (Inter-science, New York, 1965).Google Scholar
  26. [23]
    A.J. Kassmann, J. Chem. Phys. 53(1970)4118.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1985

Authors and Affiliations

  • G. A. Stewart
    • 1
  1. 1.Department of PhysicsUniversity of New South WalesDuntroonAustralia

Personalised recommendations