Advertisement

Journal of Chemical Ecology

, Volume 20, Issue 7, pp 1457–1482 | Cite as

Volatile shell-investigation cues of land hermit crabs: Effect of shell fit, detection of cues from other hermit crab species, and cue isolation

  • Robert W. Thacker
Article

Abstract

Land hermit crab responses to volatile shell-investigation cues from land hermit crabs and from marine hermit crabs are analogous to the responses of marine hermit crabs to shell-investigation cues from marine crabs and from snails. Land hermit crabs attracted to shell cues are in worse-fitting shells and are more likely to investigate conspecifics' shells than are crabs attracted to feeding cues. Moving land hermit crabs from worse shells to better shells decreases the number of crabs investigating shells, while moving crabs from better shells to worse shells increases the number of crabs investigating shells. Gravid females have better-fitting shells than nongravid females or males. Crabs from two different populations in Panama have different shell fits and show different levels of responses to shell-investigation cues. Land hermit crabs respond to volatile shell-investigation cues from both land and marine hermit crabs, but marine hermit crabs do not respond to cues from land hermit crabs. A cue detection system for volatile cues most likely evolved in land hermit crabs during their transition from a marine to a terrestrial existence. Thus, the cues found in land hermit crabs and marine hermit crabs may be chemically similar. Volatile compounds collected from hermit crabs onto Tenax columns can be eluted with ethanol and act as shell-investigation cues in field assays.

Key Words

Land hermit crabs Coenobita Calcinus Clibanarius Crustacea chemical cues shell fit shell acquisition behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P. 1978. Shell selection and utilization in a terrestrial hermit crab,Coenobita compressus (H. Milne Edwards).Oecologia 34:239–253.Google Scholar
  2. Bach, C., Hazlett, B., andRittschof, D. 1976. Effects of interspecific competition on fitness of the hermit crabClibanarius tricolor.Ecology 57(3):579–586.Google Scholar
  3. Ball, E.E. 1972. Observations on the biology of the hermit crab,Coenobita compressus H. Milne Edwards (Decapoda; Anomura) on the west coast of the Americas.Rev. Biol. Trop. 20(2):265–273.Google Scholar
  4. Bertness, M.D. 1981. Pattern and plasticity in tropical hermit crab growth and reproduction.Am. Nat. 117(5):754–773.Google Scholar
  5. Childress, J.R. 1972. Behavioral ecology and fitness theory in a tropical hermit crab.Ecology 53:960–964.Google Scholar
  6. Ciccioli, P., Bertoni, G., Brancaleoni, E., Fratarcangeli, R., andBruner, F. 1976. Evaluation of organic pollutants in the open air and atmospheres in industrial sites using graphitized carbon black traps and gas chromatographic-mass spectrometric analysis with specific detectors,J. Chromatogr. 126:757–770.PubMedGoogle Scholar
  7. Conover, W.J. 1980. Practical Nonparametric Statistics, 2nd ed. John Wiley, & Sons, New York.Google Scholar
  8. De Wilde, P.A.W.J. 1973. On the ecology ofCoenobita clypeatus in Curaçao with reference to reproduction, water economy and osmoregulation in terrestrial hermit crabs.Stud. Fauna Curaçao 44:1–138.Google Scholar
  9. Dunham, D.W., andGilchrist, S.L. 1988. Behavior, pp. 97–138in W.W. Burggren and B.R. McMahon (eds.). Biology of the Land Crabs. Cambridge University Press, Cambridge.Google Scholar
  10. Fotheringham, N. 1976. Effects of shell stress on the growth of hermit crabs.J. Exp. Mar. Biol. Ecol. 23:655–671.Google Scholar
  11. Gilchrist, S.L. 1991. Behavior of crustacea: ecological and social perspectives.Mem. Queens. Mus. 31:263–275.Google Scholar
  12. Hazlett, B.A. 1981. The behavioral ecology of hermit crabs.Annu. Rev. Ecol. Syst. 12:1–22.Google Scholar
  13. Hazlett, B.A. 1982. Chemical induction of visual orientation in the hermit crabClibanarius vittatus.Anim. Behav. 30(4):1259–1260.Google Scholar
  14. Hazlett, B.A 1989. Mating success of male hermit crabs in shell generalist and shell specialist species.Behav. Ecol. Sociobiol. 25:119–128.Google Scholar
  15. Hazlett, B.A., andBaron, L.C. 1989. Influence of shells on mating behavior in the hermit crabCalcinus tibicen.Behav. Ecol. Sociolbiol. 24:369–376.Google Scholar
  16. Katz, J., andRittschof, D. 1993. Alarm/Investigation responses of hermit crabs as related to shell fit and crab size.Mar. Behav. Physiol. 22:171–182.Google Scholar
  17. Kellogg, C.W. 1976. Gastropod shells: A potentially limiting resource for hermit crabs.J. Exp. Mar. Biol. Ecol. 22:101–111.Google Scholar
  18. Kratt, C.M., andRittschof, D. 1991. Peptide attraction of hermit crabsClibanarius vittatus Bosc: Roles of enzymes and substrates.J. Chem. Ecol. 17(12):2347–2365.Google Scholar
  19. Kurta, A. 1982. Social facilitation of foraging behavior by the hermit crabCoenobita compressus in Costa Rica.Biotropica 14:132–136.Google Scholar
  20. Markham, J.C. 1968. Notes on growth-patterns and shell-utilization of the hermit crabPagurus bernhardus (L.).Ophelia 5:189–205.Google Scholar
  21. McLaughlin, P.A. 1983. Hermit crabs—are they really polyphyletic?J. Crust. Biol. 3(4):608–621.Google Scholar
  22. McLean, R.B. 1974. Direct shell acquisition by hermit crabs from gastropods.Experientia 30(2):206–208.Google Scholar
  23. Neter, J., Wasserman, W., andKutner, M.H. 1990. Applied Linear Statistical Models, 3rd ed. Richard Irwin, Boston.Google Scholar
  24. Orihuela, B., Diaz, H., Forward, R.B., Jr., andRittschof, D. 1992. Orientation of the hermit crabClibanarius vittaus (Bosc) to visual cues: Effects of mollusc chemical cues.J. Exp. Mar. Biol. Ecol. 164:193–208.Google Scholar
  25. Page, H.M., andWillason, S.W. 1982. Distribution patterns of terrestrial hermit crabs at Enewetak Atoll, Marshall Islands.Pac. Sci. 36(1):107–117.Google Scholar
  26. Patt, J.M., Rhoades, D.F., andCorkill, J.A. 1988. Analysis of the floral fragrance ofPlatanthera stricta.Phytochemistry 27(1):91–95.Google Scholar
  27. Provenzano, A.J., Jr. 1960. Notes on Bermuda hermit crabs (Crustacea: Anomura).Bull. Mar. Sci. 10:117–124.Google Scholar
  28. Rittschof, D. 1980a. Chemical attraction of hermit crabs and other attendants to simulated gastropod predation sites.J. Chem. Ecol. 6(1):103–118.Google Scholar
  29. Rittschof, D. 1980b. Enzymatic production of small molecules attracting hermit crabs to simulated gastropod predation sites.J. Chem. Ecol. 6(3):665–675.Google Scholar
  30. Rittschof, D., andSutherland, J.P. 1986. Field studie on chemically mediated behavior in land hermit crabs: Volatile and nonvolatile odors.J. Chem. Ecol. 12(6):1273–1284.Google Scholar
  31. Rittschof, D., Kratt, C.M., andClare, A.S. 1990. Gastropod predation sites: The role of predator and prey in chemical attraction of the hermit crabClibanarius vittatus.J. Mar. Biol. Assoc. U.K 70:583–596.Google Scholar
  32. Rittschof, D., Tsai, D.W., Massey, P.G., Blanco, L., Keuber, G.L., Jr., andHaas, R.J., Jr.. 1992. Chemical Mediation of behavior in hermit crabs: Alarm and aggregation cues.J. Chem. Ecol. 18(7):959–984.Google Scholar
  33. Small, M.P., andThacker, R.W. 1994. Land hermit crabs use odors of dead conspecifics to locate shell sources.J. Exp. Mar. Biol. Ecol. Google Scholar
  34. Sokal, R.R., andRohlf, F.J. 1981. Biometry. W.H. Freeman, San Francisco.Google Scholar
  35. Spight, T.N. 1977. Availability and use of shells by intertidal hermit crabs.Biol. Bull. 152:120–133.Google Scholar
  36. Vance, R.R. 1972. Competition and mechanism of coexistence in three sympatric species of intertidal hermit crabs.Ecology 53:1062–1074.Google Scholar
  37. Wilbur, T.P., Jr. 1989. Associations between gastropod shell characteristics and egg production in the hermit crabPagurus longicarpus.Oecologia 81:6–15.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Robert W. Thacker
    • 1
  1. 1.Department of BiologyUniversity of MichiganAnn Arbor

Personalised recommendations