Skip to main content

Advertisement

Log in

Higher plant terpenoids: A phytocentric overview of their ecological roles

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Characteristics of higher plant terpenoids that result in mediation of numerous kinds of ecological interactions are discussed as a framework for this Symposium on Chemical Ecology of Terpenoids. However, the role of terpenoid mixtures, either constitutive or induced, their intraspecific qualitative and quantitative compositional variation, and their dosage-dependent effects are emphasized in subsequent discussions. It is suggested that little previous attention to these characteristics may have contributed to terpenoids having been misrepresented in some chemical defense theories. Selected phytocentric examples of terpenoid interactions are presented: (1) defense against generalist and specialist insect and mammalian herbivores, (2) defense against insect-vectored fungi and potentially pathogenic endophytic fungi, (3) attraction of entomophages and pollinators, (4) allelopathic effects that inhibit seed germination and soil bacteria, and (5) interaction with reactive troposphere gases. The results are integrated by discussing how these terpenoids may be contributing factors in determining some properties of terrestrial plant communities and ecosystems. A terrestrial phytocentric approach is necessitated due to the magnitude and scope of terpenoid interactions. This presentation has a more broadly based ecological perspective than the several excellent recent reviews of the ecological chemistry of terpenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arey, J., Winer, A.M., Atkinson, R., Aschmann, S.M., Long, W.D., Morrison, C.L., andOlszyk, D.M. 1991. Terpenes emitted from agricultural species found in California's Central Valley.J. Geophys. Res. 96:9329–9336.

    Google Scholar 

  • Arrhenius, S.P., andLangenheim, J.H. 1983. Inhibitory effects ofHymenaea andCopaifera leaf resins on the leaf fungusPestalotia subcuticularis.Biochem. Syst. Ecol. 11:361–366.

    Google Scholar 

  • Asplund, R.O. 1968. Monoterpenes: Relationship between structure and inhibition of germination.Phytochemistry 7:1995–1997.

    Google Scholar 

  • Asplund, R.O. 1969. Some qualitative aspects of the phytotoxicity of monoterpenes.Weed Sci. 17:454–455.

    Google Scholar 

  • Barbosa, P., andLetourneau, D.K. (eds.). 1988. Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Barbosa, P., andSaunders, J.A. 1985. Plant allelochemicals: Linkage between herbivores and their natural enemies, pp. 107–137,in G.A. Cooper-Driver, T. Swain, and E.E. Conn (eds.). Chemically Mediated Interactions between Plants and Other Organisms. Recent Advances in Phytochemistry, Vol. 19. Plenum Press, New York.

    Google Scholar 

  • Bell, A.A., Stipanovic, R.D., Elzen, G.W., andWilliams, H.J., Jr. 1987. Structural and genetic variation of natural pesticides in pigment glands of cotton (Gossypium), pp. 477–490,in G.R. Waller (ed.). Allelochemicals, Role in Agriculture and Forestry, ACS Symposium Series No. 330. American Chemical Society, Washington, DC.

    Google Scholar 

  • Bell, C.M., andHarestad, A.S. 1987. Efficacy of pine oil as repellent to wildlife.J. Chem. Ecol. 13:1409–1417.

    Google Scholar 

  • Berenbaum, M.R. 1985. Interactions among allelochemicals in plants, pp. 139–169,in G.A. Cooper-Driver, T. Swain and E.E. Conn (eds.). Chemically Mediated Interactions between Plants and Other Organisms. Recent Advances in Phytochemistry, Vol. 19. Plenum Press, New York.

    Google Scholar 

  • Berenbaum, M.R. 1988. Allelochemicals in insect-microbe-plant interactions: Agents provocateurs in the coevolutionary arms race, pp. 97–124,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Berenbaum, M.R. andZangerl. 1992. Genetics of secondary metabolism and herbivore resistance in plants, pp. 415–438,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, Vol. 2, Ecological and Evolutionary Processes. Academic Press, New York.

    Google Scholar 

  • Bergström, G. 1987. On the role of volatile signals in the evolution and speciation of plants and insects: Why do flowers smell and why do they smell differently? pp. 321–327,in V. Labegrie, G. Fabius, and D. Lachaise (eds.). Insects-Plants. W. Junk, Dordrecht.

    Google Scholar 

  • Bergström, G. 1991. Chemical ecology of terpenoid and other fragrances of angiosperm flowers, pp. 287–296,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.

    Google Scholar 

  • Bergström, J., andBergström, G. 1989. Floral scents ofBartsia alpina (Scrophulariaceae): chemical composition and variation between individual plants.Nord. J. Bot. 9:1–3.

    Google Scholar 

  • Berryman, A.A. 1986. Forest Insects. Principles and Practice of Population Management. Plenum Press, New York.

    Google Scholar 

  • Berryman, A.A. (ed.). 1988. Dynamics of Forest Insect Populations. Plenum, New York.

    Google Scholar 

  • Berryman, A.A. 1989. Adaptive pathways in scolytid-fungus associations, pp. 145–159,in N. Wilding, N.M. Collins, P.M. Hammond, and J.F. Webber (eds.). Insect-Fungus Interactions. Academic Press, New York.

    Google Scholar 

  • Berryman, A.A., Raffa, K.F., Millstein, J.A., andStenseth, N.C. 1989. Interactive dynamics of bark beetle aggregation and conifer defense rates.Oikos 56:256–263.

    Google Scholar 

  • Bjorkman, C., Larsson, S., andGraf, R. 1991. Effects of nitrogen fertilization on pine needle chemistry and sawfly performance.Oecologia 86:202–209.

    Google Scholar 

  • Bowers, M.D. 1991. Iridoid glycosides, pp. 297–325,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites. Vol. 1, The Chemical Participants. Academic Press, New York.

    Google Scholar 

  • Bowers, M.D., andPuttick, G.M. 1986. Fate of ingested iridoid glycosides in lepidopteran herbivores,J. Chem. Ecol. 12:167–178.

    Google Scholar 

  • Bowers, M.D., andPuttick, G.M. 1988. Response of generalist and specialist insects to qualitative allelochemical variation.J. Chem. Ecol. 14:319–334.

    Google Scholar 

  • Bradow, J.M., andConnick, W.J., Jr. 1990. Volatile seed germination inhibitors from plant residues.J. Chem. Ecol. 16:645–666.

    Google Scholar 

  • Brandner, T.A., Peterson, R.O., andRisenhoover, K.L. 1990. Balsam fir on Isle Royale: Effects of moose herbivory and population density.Ecology 71:155–164.

    Google Scholar 

  • Bridges, J.R. 1987. Effects of terpenoid compounds on growth of symbiotic fungi associated with the southern pine beetle.Phytopathology 77:83–85.

    Google Scholar 

  • Bruin, J., Dicke, M., andSabelis, M.W. 1992. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics.Experientia 48:525–529.

    Google Scholar 

  • Bryant, J.P., Chapin, F.S., III, andKlein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory.Oikos 40:357–368.

    Google Scholar 

  • Bryant, J.P., Reichardt, P.B., Claussen, T.P., Provenza, F.O., andKuropat, P.J. 1992. Woody-plant mammal interactions, pp. 343–370,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Button, D.K. 1984. Evidence for a terpene-based food chain in the Gulf of Alaska.Appl. Environ. Microbiol. 48:1004–1011.

    Google Scholar 

  • Byers, J.A., Lanne, B.S., andLofquist, J. 1989. Host tree unsuitability recognized by pine shoot beetles in flight.Experientia 45:489–492.

    Google Scholar 

  • Camors, F.B., Jr., andPayne, T.L. 1971. Response ofHeydonia unica (Hymenoptera: Pteromalidae) toDendroctonus frontalis (Coleoptera: Scolytidae) pheromones and a host-tree terpene.Ann. Entomol. Soc. Am. 65:31–33.

    Google Scholar 

  • Carroll, G.C. 1986. The biology of endophytism in plants with particular reference to woody plants, pp. 205–222,in N. Fokkema and J. van den Heuvel (eds.). Microbiology of the Phyllosphere. Cambridge University Press, London.

    Google Scholar 

  • Carroll, G.C. 1988. Fungal endophytes in stem and leaves: From latent pathogens to mutualistic symbiont.Ecology 69:2–9.

    Google Scholar 

  • Cates, R.G., andRhoades, D.F. 1977. Patterns in the production of antiherbivore chemical defenses in plant communities.Biochem. Syst. Ecol. 5:185–193.

    Google Scholar 

  • Cates, R.G., andRedak, R. 1988. Variation in terpene chemistry of Douglas-fir and its relationship to western spruce budworm success, pp. 317–344,in K. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • Cates, R.G., andZou, J. 1990. Douglas fir (Pseudotsuga menzeisii) population variation in terpene chemistry and its role in budworm dynamics, pp. 169–182,in A. Watt, S. Leather, M. Hunter and N. Kidd (eds.). Population Dynamics of Forest Insects. Intercept, London.

    Google Scholar 

  • Cates, R.G., Redak, R.A., andHenderson, C.B. 1983. Patterns in defensive natural products chemistry: Douglas fir and western spruce budworm interactions, pp. 3–20,in P.A. Hedin (ed.). Plant Resistance to Insects, ACS Symposium Series 208. American Chemical Society, Washington, DC.

    Google Scholar 

  • Chararas, C., Revolon, C., Feinberg, M., andDucauze, C. 1982. Preference of certain scolytidae for different conifers. A statistical approach.J. Chem. Ecol. 8:1093–1109.

    Google Scholar 

  • Christiansen, E. 1985.Ips/Ceratocystis infection of Norway spruce: What is deadly dosage?Z. Angew. Entomol. 99:6–11.

    Google Scholar 

  • Cluff, L.K., Welch, B.L., Pederson, J.C., andBrotherson, J.D. 1982. Concentration of monoterpenoids in the rumen ingesta of wild mule deer.J. Range Manage. 35:192–194.

    Google Scholar 

  • Cobb, F.W., Jr., Krstic, M., Zavarin, E., andBarber, H.W. 1968. Inhibitory effects of volatile oleoresin components ofFomes annosus and fourCeratocystis species.Phytopathology 58:1327–1335.

    Google Scholar 

  • Coley, P.D., Bryant, J.B., andChapin, F.S. 1985. Resource availability and plant herbivore defense.Science 230:895–899.

    Google Scholar 

  • Cook, S.P., andHain, F.P. 1988. Toxicity by host monoterpenes toDendroctonus frontalis andIps calligraphus.J. Entomol. Sci. 23:287–290.

    Google Scholar 

  • Crankshaw, D.R., andLangenheim, J.H. 1981. Variation in terpenes and phenolics through leaf development inHymenaea and its possible significance to herbivory.Biochem. Syst. Ecol. 9:115–124.

    Google Scholar 

  • Crawley, M.J. 1989. The relative importance of vertebrate and invertebrate herbivores in plant population dynamics, pp. 45–71,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. I. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Croteau, R. 1987. Biosynthesis and catabolism of monoterpenoids.Chem. Rev. 87:929–954.

    Google Scholar 

  • Croteau, R., andJohnson, M.A. 1985. Biosynthesis of terpenoid wood extractives, pp. 379–439,in T. Higuci (ed.). Biosynthesis and Biodegradation of Wood Components. Academic Press, New York.

    Google Scholar 

  • Crutzen, P.J., andAndreae, M.O. 1985. Atmospheric chemistry, pp. 75–113,in T.F. Malone and J.G. Roederer (eds.). Global Change. Cambridge University Press, England.

    Google Scholar 

  • Dell, B., andMcComb, A.J. 1978. Plant resins—their formation, secretion and possible functions, pp. 277–316,in H.W. Woolhouse (ed.). Advances in Botanical Research VI. Academic Press, New York.

    Google Scholar 

  • Di Castri, F. 1981. Mediterranean-type shrublands of the world, pp. 1–52,in F. de Castri, D.W. Goodall, and R.L. Specht (eds.). Ecosystems of the World II. Elsevier, Amsterdam.

    Google Scholar 

  • Dicke, M., Sabelis, M.W., Takabayashi, J., Bruin, J., andPosthumus, M.A. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control.J. Chem. Ecol. 16:3091–3118.

    Google Scholar 

  • Dixon, W.N., andPayne, T.L. 1980. Attraction of entomophagous and associate insects of the southern pine beetle to beetle- and host-tree-produced volatiles.J. G. Entomol. Soc. 15:378–389.

    Google Scholar 

  • Dobson, H. 1993. Floral volatiles in insect biology, pp. 47–81,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. V. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Dobson, H., Bergström, G., andGroth, I. 1990. Fragrance chemistry differences between flower parts ofRosa rugosa (Rosaceae).Isr. J. Bot. 39:143–156.

    Google Scholar 

  • Dodson, C.H., Dressler, R.L., Hills, H.G., Adams, R.M., andWilliams, N.H. 1969. Biologically active compounds in orchid fragrances.Science 164:1243–1249.

    Google Scholar 

  • Einhellig, E.A. 1985. Interactions among allelochemicals and other stress factors of the plant environment, pp. 343–357,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium. Series 330. American Chemical Society, Washington, DC.

    Google Scholar 

  • Eisner, T., Johnessee, J.S., Carvell, J., Hendry, L.B., andMeinwald, J. 1974. Defensive use by an insect of a plant resin.Science 184:996–999.

    PubMed  Google Scholar 

  • Elliott, S., andLoudon, A. 1987. Effects of monoterpene odors on food selection by red deer calves.J. Chem. Ecol. 13:1343–1350.

    Google Scholar 

  • Elzen, G.W., Williams, H.J., andVinson, S.B. 1983. Response by the parasitoidCampoleptis sonorensis (Hymenoptera: Ichneumonidae) to chemicals (synomones) in plants: Implications for host habitat location.Environ. Entomol. 12:1872–1876.

    Google Scholar 

  • Elzen, G.W., Williams, H.J., andVinson, S.B. 1984. Isolation and identification of cotton synomones mediating searching behavior by parasitoidCampoletis sonorensis.J. Chem. Ecol. 10:1251–1264.

    Google Scholar 

  • Espinosa-Garcia, F.J., andLangenheim, J.H. 1991a. Effect of some leaf essential oil phenotypes in coastal redwood on the growth of several fungi with endophytic stages.Biochem. Syst. Ecol. 19:629–642.

    Google Scholar 

  • Espinosa-Garcia, F.J., andLangenheim, J.H. 1991b. Effects of sabinene and γ-terpinene from coastal redwood leaves acting singly or in mixtures on the growth of some of their fungus endophytes.Biochem. Syst. Ecol. 19:643–650.

    Google Scholar 

  • Espinosa-Garcia, F.J., Saldivar-Garcia, P., andLangenheim, J.H. 1993. Dose-dependent effects in vitro of essential oils on growth of two endophytic fungi in coastal redwood leaves.Biochem. Syst. Ecol. 21:185–194.

    Google Scholar 

  • Fajer, E.D., Bowers, M.D., andBazzaz, F.A. 1992. The effects of nutrients and enriched CO2 environments on production of carbon-based allelochemicals inPlantago: A test of the carbon/nutrient balance hypothesis.Am. Nat. 140:707–723.

    Google Scholar 

  • Feeny, P. 1976. Plant apparency and chemical defense, pp. 3–19,in J.W. Wallace and R.C. Mansell (eds.). Biochemical Interactions between Plants and Insects. Plenum Press, New York.

    Google Scholar 

  • Feeny, P. 1992. The evolution of chemical ecology: contributions from the study of herbivorous insects, pp. 1–44,in G.A. Rosenthal and M.R. Berbenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, Vol. II, Ecological and Evolutionary Processes. Academic Press, New York.

    Google Scholar 

  • Fischer, N.H. 1991. Plant terpenoids as allelopathic agents, pp. 377–399,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.

    Google Scholar 

  • Fischer, N.H., Tanrisever, N., andWilliamson, G.B. 1988. Allelopathy in the Florida scrub community as a model for natural herbicide actions, pp. 233–249,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330. American Chemical Society, Washington, DC.

    Google Scholar 

  • Fischer, N.H., Williamson, G.B., Weidenhamer, J.D., andRichardson, D.R. 1994. In Search of allelopathy in the Florida scrub. The role of terpenoids.J. Chem. Ecol. 20:1355–1380.

    Google Scholar 

  • Foley, W.J., Lassak, E.V., andBrophy, J. 1987. Digestion and absorption ofEucalyptus essential oils in greater glider and brush tail possum.J. Chem. Ecol. 13:2115–2130.

    Google Scholar 

  • Fox, L.R. 1988. Diffuse coevolution within complex communities.Ecology 69:906–907.

    Google Scholar 

  • Friedman, J. 1988. Allelopathy in desert ecosystems, pp. 53–68in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330. American Chemical Society, Washington, DC.

    Google Scholar 

  • Fritz, R.S., andSimms, E.L. 1992. Plant Resistance to Herbivores and Pathogens. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Gambliel, H.A., andCates, R.G. 1994. Terpene changes due to maturation and canopy level in Douglas-fir (Pseudotsuga menziesii) fresh needle oil.Biochem. Syst. Ecol. 22: In press.

  • Gershenzon, J. 1993. The cost of plant chemical defenses against herbivory: A biochemical perspective, pp. 105–173,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. V. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher plants.J. Chem. Ecol. 20:1281–1328.

    Google Scholar 

  • Gershenzon, J., andCroteau, R. 1990. Regulation of monoterpene biosynthesis in higher plants, pp. 99–160,in G.H.N. Towers and H.A. Stafford (eds.). Biochemistry of the Mevalonic Acid Pathway to Terpenoids. Plenum Press, New York.

    Google Scholar 

  • Gershenzon, J., andCroteau, R. 1991. Terpenoids, pp. 165–219,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores, Their Interactions with Secondary Metabolites, Vol. 1, The Chemical Participants. Academic Press, New York.

    Google Scholar 

  • Gershenzon, J., Lincoln, D.E., andLangenheim, J.H. 1978. The effects of moisture stress on monoterpenoid yield and composition inSatureja douglasii.Biochem. Syst. Ecol. 6:33–44.

    Google Scholar 

  • Gollob, L. 1980. Monoterpene composition in bark beetle-resistant loblolly pine.Naturwissenschaften 67:409–410.

    Google Scholar 

  • Gonzales de Parra, M., Anaya, A.L., Espinosa, F., Jimenez, F., andCastillo, R. 1981. Allelopathic potential ofPoqueria trinervia (Compositae) and piquerols A and B.J. Chem. Ecol. 7:209–215.

    Google Scholar 

  • Greamy, P.D., andHagen, K.S. 1981. Prey selection, pp. 121–135in D.A. Nordlund, R.L. Jones, and W.J. Lewis (eds.). Semiochemicals: Their Role in Pest Control. John Wiley, New York.

    Google Scholar 

  • Grosjean, D., Williams, E.L., III, andSeinfeld, J.H. 1992. Atmospheric oxidation of selected terpenes and related carbonyls: Gas-phase carbonyl products.Environ. Sci. Technol. 26:1526–1533.

    Google Scholar 

  • Gunasena, G.H., Vinson, S.B., Williams, H.J., andStipanovic, R.D. 1988. Effects of caryophyllene and caryophyllene oxide and their interaction with gossypol on growth and development ofHeliothis virescens (F.) (Lepidopteran; Noctuidae).J. Econ. Entomol. 81:93–97.

    Google Scholar 

  • Hall, G.D., andLangenheim, J.H. 1986. Temporal changes in the leaf monoterpenes ofSequoia sempervirens.Biochem. Syst. Ecol. 14:61–69.

    Google Scholar 

  • Hall, G.D., andLangenheim, J.H. 1987. Geographic variation in leaf monoterpenes ofSequoia sempervirens.Biochem. Syst. Ecol. 15:31–43.

    Google Scholar 

  • Halligan, J.P. 1975. Toxic terpenes fromArtemisia californica.Ecology 56:999–1003.

    Google Scholar 

  • Harborne, J.B. 1988. Introduction to Ecological Biochemistry, 3rd ed.. Academic Press, London.

    Google Scholar 

  • Harborne, J.B., 1991a. Recent advances in the ecological chemistry of plant terpenoids, pp. 399–426,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.

    Google Scholar 

  • Harborne, J.B. 1991b. The chemical basis of plant defense, pp. 46–59,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses against Mammalian Herbivory. CRC Press, London.

    Google Scholar 

  • Harper, J.L. 1977. Population Biology of Plants. Academic Press, New York.

    Google Scholar 

  • Hedin, P.A., Lindig, O.H., Sikorowski, P.P., andWyatt, M. 1978. Supressants of the gut bacteria in the boll weevil from the cotton plant.J. Econ. Entomol. 71:394–396.

    Google Scholar 

  • Herms, D.A., andMattson, W.J. 1992. The dilemma of plants: To grow or to defend.Q. Rev. Biol. 67:283–335.

    Google Scholar 

  • Hinejima, M. Hobson, K.R., Otsuka, T., Wood, D.L., andKubo, I. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine treePinus ponderosa: A defense mechanism against microbial invasion.J. Chem. Ecol. 18:1809–1818.

    Google Scholar 

  • Hintikka, W. 1970. Selective effect of terpenes on wood-decomposing hymenomycetes.Karstenia 11:28–32.

    Google Scholar 

  • Hodges, J.D., Elam, W.W., Watson, W.F., andNebekur, T.E. 1979. Oleoresin characteristics and susceptibility for four southern pine beetle attacks.Can. Entomol. 11:889–896.

    Google Scholar 

  • Howard, J.J., Coxin, J., Jr., andWiemer, D.F. 1988. Toxicity of terpenoid deterrents to the leaf-cutting antAtta cephalotes and its mutualistic fungus.J. Chem. Ecol. 13:59–69.

    Google Scholar 

  • Howard, J.J., Green, T.P., andWiemer, D.F. 1989. Comparative deterrency of two terpenoids to two genera of attine ants.J. Chem. Ecol. 15:2275–2288.

    Google Scholar 

  • Howes, F.N. 1949. Vegetable Gums and Resins. Chronica Botanica Co., Waltham, Massachusetts.

    Google Scholar 

  • Hubbell, S.P., andHoward, J.J. 1984. Chemical leaf repellency to an attine ant: Seasonal distribution among potential host plant species.Ecology 65:1067–1076.

    Google Scholar 

  • Hubbell, S.P., Wiemer, D.F., andAdejore, A. 1983. Antifungal terpenoid defends a neotropical tree (Hymenaea) against attack by fungus-growing ants.Oecologia 60:321–327.

    Google Scholar 

  • Ikeda, T., Matsumura, F., andBenjamin, D.M. 1977. Mechanism of feeding discrimination between matured and juvenile foliage by two species of pine sawflies.J. Chem. Ecol. 3:677–694.

    Google Scholar 

  • Jones, C.G., andFirn, R.D., 1991. On evolution of plant secondary chemical diversity.Phil. Trans. R. Soc. London Ser. B 333:273–280.

    Google Scholar 

  • Jones, C.G., andLawton, J.H. 1991. Plant chemistry and insect species richness of British umbellifers.J. Animal Ecol. 60:767–777.

    Google Scholar 

  • Karban, R. 1992. Plant variation: Its effects on populations of herbivorous insects, pp. 195–215,in R.J. Fritz and E.L. Simms. Plant Resistance to Herbivores and Pathogens. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Katz, D.A., Sneh, R., andFriedman, J. 1987. The allelopathic potential ofCoridothymus capitatus L. (Labiatae). Preliminary studies on the role of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes.Plant Soil 98:53–66.

    Google Scholar 

  • Kepner, R.E., Ellison, B.O., Breckenridge, M., Connolly, G., Madden, S.C., andMuller, C.J. 1974. Volatile terpenes in California bay foliage. Changes in composition during maturation.J. Agric. Food Chem. 22:781–784.

    Google Scholar 

  • Klein, D.R. 1981. The problems of overpopulation of deer in North America, pp. 119–127,in P.A. Jewell and S. Holt (eds.). Problems in Management of Locally Abundant Wild Mammals. Academic Press, New York.

    Google Scholar 

  • Klimetzek, D., Kohler, J., Vité, J.P., andKohnle, U. 1987. Dosage response to ethanol mediates host selection by secondary bark beetles.Naturwissenschaften 73:270–271.

    Google Scholar 

  • Knudson, J.T., Tollsten, L., andBergström, G. 1993. Floral scents—a checklist of volatile compounds isolated by headspace techniques.Phytochemistry 33:253–280.

    Google Scholar 

  • Kotzias, D., Sparta, C., andDuane, C. 1992. Distribution of optical isomers of monoterpenes (±)-α-pinene in the leaf oil of conifers.Naturwissenschaften 92:24–26.

    Google Scholar 

  • Krischik, V.A. 1991. Specific or generalized plant defense: Reciprocal interactions between herbivores and pathogens, pp. 309–340,in P. Barbosa, V.A. Krischik, and C.G. Jones (eds.). Microbial Mediation of Plant-Herbivore Interactions. John Wiley & sons, New York.

    Google Scholar 

  • Krischik, V. A., andDenno, R.F. 1983. Individual, population and geographic patterns in plant defense, pp. 463–572,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.

    Google Scholar 

  • Kubo, I., andHanke, F.J. 1985. Multifaceted chemically based resistance in plants, pp. 171–194,in G.A. Cooper-Driver, T. Swain, and E.E. Conn (eds.). Chemically Mediated Interactions between Plants and Other Organisms. Recent Advances in Phytochemistry, Vol. 19. Plenum Press, New York.

    Google Scholar 

  • Langenheim, J.H. 1969. Amber. A botanical enquiry.Science 163:1157–1169.

    PubMed  Google Scholar 

  • Langenheim, J.H. 1984. Role of plant secondary compounds in wet tropical ecosystems, pp. 189–208,in E. Media, H. Mooney, and C. Vasquez-Yanes (eds.). Physiological Ecology of Plants in the Wet Tropics. W. Junk, The Hague.

    Google Scholar 

  • Langenheim, J.H. 1990. Plant resins.Am. Sci. 78:16–24.

    Google Scholar 

  • Langenheim, J.H., andHall, G.D. 1983. Sesquiterpene deterrence of a leaf-tying lepidopteranStenoma ferrocanella onHymenaea stigonocarpa in Central Brazil.Biochem. Syst. Ecol. 11:29–36.

    Google Scholar 

  • Langenheim, J.H., andStubblebine, W.H. 1983. Variation in resin composition between parent tree and progeny inHymenaea: Implications for herbivory in the humid tropics.Biochem. Syst. Ecol. 11:97–106.

    Google Scholar 

  • Langenheim, J.H., Foster, C.E. Lincoln, D.E., andStubblebine, W.H. 1978. Implications of variation in resin composition among organs, tissues and populations in the tropical legumeHymenaea.Biochem. Syst. Ecol. 6:299–313.

    Google Scholar 

  • Langenheim, J.H., Foster, C.E., andMcGinley, R.M. 1980. Inhibitory effects of different quantitative compositions ofHymenaea leaf resins on a generalist herbivoreSpodoptera exigua.Biochem. Syst. Ecol. 8:358–396.

    Google Scholar 

  • Langenheim, J.H., Convis, C.L., Macedo, C.A., andStubblebine, W.H. 1986a.Hymenaea andCopaifera leaf sesquiterpenes in relation to lepidopteran herbivory.Biochem. Syst. Ecol. 14:41–49.

    Google Scholar 

  • Langenheim, J.H., Macedo, C.A., Ross, M.K., andStubblebine, W.H. 1986b. Leaf development in the tropical leguminous treeCopaifera in relation to microlepidopteran herbivory.Biochem. Syst. Ecol. 14:51–59.

    Google Scholar 

  • Larsson, S., Bjorkman, C., andGraf, R. 1986. Responses ofNeodiprion sertifer (Hym. Diprionidae) larvae to variation in needle resin concentration in Scots pine.Oecologia 70:77–84.

    Google Scholar 

  • Lerdau, M.T. 1991. Plant function and biogenic terpene emissions, pp. 121–134,in T. Sharkey, E. Holland, and H. Mooney (eds.). Trace Gas Emissions by Plants. Academic Press, New York.

    Google Scholar 

  • Lerdau, M.T., andPenuelas, J. 1993. Terpenes in plants: Links between the biosphere and the atmosphere.Mund. Cient 13:60–64.

    Google Scholar 

  • Lerdau, M., Monson, R., andLitvak, M. 1994. Supply and demand in plant chemical defense: Monoterpenes and the growth-differentiation balance hypothesis.Trends Ecol. Evol. 9:58–61.

    Google Scholar 

  • Letourneau, D.K. 1988. Conceptual framework of three-trophic level interactions, pp. 1–9,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Lincoln, D.E., andCouvet, D. 1989. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint.Oecologia 78:112–114.

    Google Scholar 

  • Lincoln, D.E., andLangenheim, J.H. 1976. Geographic pattern of monoterpenoid composition inSatureja douglasii.Biochem. Syst. Ecol. 4:237–248.

    Google Scholar 

  • Lincoln, D.E., andLangenheim, J.H. 1978. Effect of light and temperature on monoterpenoid yield and composition inSatureja douglasii.Biochem. Syst. Ecol. 6:21–32.

    Google Scholar 

  • Lincoln, D.E., andLangenheim, J.H. 1979. Variation ofSatureja douglasii monoterpenoids in relation to light intensity and herbivory.Biochem. Syst. Ecol. 7:289–298.

    Google Scholar 

  • Linhart, Y.B. 1991. Disease, parasitism and herbivory: Multidimensional challenges in plant evolution.Trends Ecol. Evol. 12:392–396.

    Google Scholar 

  • Linhart, Y.B., Snyder, M.A., andHubeck, S.A. 1989. The influence of animals on genetic variability within ponderosa pine stands, illustrated by the effects of Abert's squirrel and porcupine, pp. 141–148,in A. Teck et al. (eds.). Multiresource management of ponderosa pine forests. USDA Forest Service General Technical Report RM-185.

  • Longhurst, W.M., Oh, H.K., Jones, M.B., andKepner, R.E. 1968. A basis for the palatability of deer forage plants.North Am. Wildl. Nat. Resour. Conf. Trans. 33:181–189.

    Google Scholar 

  • Lopez, A., Fontan, M., Barthomeuf, O., andMinga, A. 1988. Présentation de l'expérience Atila (Action des terpenes et isoprene dans l'atmosphere) effectuée en forêt tempéré au sud ouest de la France (Forêt des Landes).Atmos. Environ. 22:1881–1894.

    Google Scholar 

  • Luis, J.G. 1991. Chemistry, biogenesis and chemotaxonomy of the diterpenoids ofSalvia, pp. 63–82,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.

    Google Scholar 

  • McBride, J.R. 1974. Plant succession in the Berkeley Hills, California.Madroño 22:317–329.

    Google Scholar 

  • McKey, D. 1979. The distribution of secondary compounds within plants, pp. 55–133,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores. Their interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Macedo, C.A., andLangenheim, J.H. 1989a. A further investigation of leaf sesquiterpene variation in relation to herbivory in two Brazilian populations ofCopaifera langsdorfii.Biochem. Syst. Ecol. 17:207–216.

    Google Scholar 

  • Macedo, C.A., andLangenheim, J.H. 1986b. Microlepidopteran herbivory in relation to leaf sesquiterpenes inCopaifera langsdorfii adult trees and seedling progeny in a Brazilian woodland.Biochem. Syst. Ecol. 17:217–224.

    Google Scholar 

  • Macedo, C.A., andLangenheim, J.H. 1989c. Intra- and interplant leaf sesquiterpene variability inCopaifera langsdorfii: Relation to microlepidopteran herbivory.Biochem. Syst. Ecol. 17:551–557.

    Google Scholar 

  • Marquis, R.J. 1992. The selective impact of herbivores, pp. 301–325,in R.S. Fritz and E.L. Simms (eds.). Plant Resistance to Herbivores and Pathogens. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Martin, S.S., Langenheim, J.H. andZavarin, E. 1974. Quantitative variation in leaf pocket composition inHymenaea courbaril.Biochem. Syst. Ecol. 3:760–787.

    Google Scholar 

  • Martin, S.S., Langenheim, J.H., andZavarin, E. 1976. Quantitative leaf resin composition inHymenaea (Leguminosae).Biochem. Syst. Ecol. 4:181–191.

    Google Scholar 

  • Meisner, J., Navon, A., Zur, M., andAscher, J.R.S. 1977. The response ofSpodoptera littoralis larvae to gossypol incorporated in an artificial diet.Environ. Entomol. 6:243–244.

    Google Scholar 

  • Mihaliak, C.A. 1985. Growth pattern and carbon allocation to volatile leaf terpenes under nitrogen limiting conditions inHeterotheca subaxillaris (Asteraceae).Oecologia 66:423–426.

    Google Scholar 

  • Mihalaik, C.A., andLincoln, D.E. 1989. Changes in leaf mono-and sesquiterpene metabolism with nitrate availability and leaf age inHeterotheca subaxillaris.J. Chem. Ecol. 15:1579–1588.

    Google Scholar 

  • Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition.Bull. Torrey Bot. Club 93:332–351.

    Google Scholar 

  • Muller, C.H. 1969. Phytotoxins as plant habitat variables.Recent Adv. Phytochem. 3:105–121.

    Google Scholar 

  • Muller, C.H., anddel Moral, R. 1966. Soil toxicity induced by terpenes fromSalvia leucophylla.Bull. Torrey Bot. Club 93:130–137.

    Google Scholar 

  • Muller, C.H., Muller, W.H., andHaines, B.L. 1964. Volatile growth inhibitors produced by shrubs.Science 143:471–473.

    Google Scholar 

  • Muzika, L.M., Pregitzer, K.S., andHanover, J.W. 1989. Changes in terpene production following nitrogen fertilization of giant fir (Abies grandis (Dougl.) Lindl.) seedlings.Oecologia 80:485–489.

    Google Scholar 

  • Myers, J.H. 1993. Population outbreaks in forest lepidoptera.Am. Sci. 81:240–251.

    Google Scholar 

  • Nagy, J.G. andRegelin, W.L. 1977. Influence of plant volatile oils on food selection by animals, pp. 225–230,in T.J. Petrie (ed.). 13th International Congress of Game Biologists. Wildlife Management Institute, Washington, D.C.

    Google Scholar 

  • Nagy, J.G., andTengerdy, R.P. 1968. Antibacterial action of essential oils ofArtemesia as an ecological factor.Appl. Microbiol. 16:441–444.

    PubMed  Google Scholar 

  • Oh, H.K., Sakai, T., Jones, M.B., andLonghurst, W.M. 1967. The effect of various essential oils isolated from Douglas-fir needles upon sheep and deer rumen microbial activity.Appl. Microbiol. 15:777–784.

    PubMed  Google Scholar 

  • Ohigashi, H., Wagner, M.R., Matsumura, F., andBenjamin, D.M. 1981. Chemical basis of differential feeding behavior of the larch sawfly,Pristiphora erichsonii (Hartwig).J. Chem. Ecol. 7:599–614.

    Google Scholar 

  • Paine, T.D., andStephen, F.M. 1987. Response of loblolly pine to different inoculum doses ofCeratocystis minor, a blue stain fungus associated withDendroctonus frontalis.Can. J. Bot. 65:2093–2095.

    Google Scholar 

  • Phelan, P.C., andStinner, B.R. 1992. Microbial mediation of plant-herbivore ecology, pp. 279–316,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interaction with Secondary Plant Metabolites, Vol. II, Ecological and Evolutionary Processes. Academic Press, New York.

    Google Scholar 

  • Picman, A.K. 1986. Biological activities of sesquiterpene lactones.Biochem. Syst. Ecol. 14:255–281.

    Google Scholar 

  • Picman, J., andPicman, A.K. 1984. Autotoxicity inParthenium hysterophorus and its possible role in control of germination.Biochem. Syst. Ecol. 12:287–292.

    Google Scholar 

  • Pimentel, D., andBellotti, A.C. 1976. Parasite-host population systems and genetic stability.Am. Nat. 110:877–888.

    Google Scholar 

  • Poinar, G.O. 1992. Life in Amber. Stanford University Press, Stanford, California.

    Google Scholar 

  • Price, P.W. 1992. The resource-based organizations of communities.Biotropica 24:273–282.

    Google Scholar 

  • Price, P.W., Bouton, C.E., Gross, P., McPherson, B.A., Thompson, J.N., andWeis, A.E. 1980. Interactions among three trophic levels of plants on interactions between insect herbivores and natural enemies.Annu. Rev. Ecol. Syst. 11:41–65.

    Google Scholar 

  • Putman, R.J., Edwards, P.J., Mann, J.C.E., How, R.C., andHill, S.D. 1989. Vegetational and faunal changes in an area of heavily grazed woodland following relief of grazing.Biol. Conserv. 47:13–32.

    Google Scholar 

  • Puttick, G.M., andBowers, M.D. 1988. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.J. Chem. Ecol. 14:335–351.

    Google Scholar 

  • Raffa, K.F. 1991. Induced defenses in conifer-bark beetle systems, pp. 245–276,in D.W. Tallamy and M.J. Raupp (eds.). Phytochemical Induction by Herbivores. Academic Press, New York.

    Google Scholar 

  • Raffa, K.F., andBerryman, A.A. 1982. Accumulation of monoterpenes and associated volatiles following fungal inoculation of grand fir with a fungus transmitted by the fir engraverScolytus ventralis (Coleoptera: Scolytidae).Can. Entomol. 114:797–810.

    Google Scholar 

  • Raffa, K.F., andBerryman, A.A. 1983. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle.Can. Entomol. 115:723–734.

    Google Scholar 

  • Raffa, K.F., andBerryman, A.A. 1987. Interacting selective pressures in conifer-bark beetle systems: A basis for reciprocal adaptations?Am. Nat. 129:234–262.

    Google Scholar 

  • Raffa, K.F., andKlepzig, K.D. 1992. Tree defense mechanisms against fungi associated with insects, pp. 354–390,in R.A. Blanchette and A.C. Biggs (eds.). Defense Mechanisms of Woody Plants against Fungi. Springer-Verlag, Berlin.

    Google Scholar 

  • Raffa, K.F., Berryman, A.A., Simasko, J., Teal, W., andWong, B.L. 1985. Effects of grand fir monoterpenes on the fir engraver beetle (Coleoptera: Scolytidae) and its symbiotic fungi.Environ. Entomol. 4:552–556.

    Google Scholar 

  • Rane, K.K., andTattar, T.A. 1987. Pathogenicity of blue-stain fungi associated withDendroctonas terebrans.Plant Dis. 71:879–883.

    Google Scholar 

  • Rasmussen, R.A., andKahlil, M.A.K. 1988. Isoprene over the Amazon Basin.J. Geophys. Res. 93:1417–1421.

    Google Scholar 

  • Reichardt, P.B., Bryant, J.P., Clausen, T.P., andWieland, G.D. 1984. Defense of winterdormant Alaska paper birch against snowshoe hare.Oecologia 65:58–69.

    Google Scholar 

  • Reichardt, P.B., Bryant, J.P., Mattes, B.R., Clausen, T.P., Chapin, F.S., III, andMeyer, M. 1990a. Winter chemical defense of Alaskan balsam poplar against snowshoe hares.J. Chem. Ecol. 16:1941–1959.

    Google Scholar 

  • Reichardt, P.B., Bryant, J.P., Anderson, B.J., Phillips, D., Claussen, T.P., Meyer, M., andFrisby, K. 1990b. Germancrone defends Labrador tea from browsing by snowshoe hares.J. Chem. Ecol. 16:1961–1970.

    Google Scholar 

  • Reichardt, P.B., Chapin, F.S., III, Bryant, S.B., Mattes, B.R., andClausen, T.P. 1991. Carbon/nutrient balance as a predictor of plant defense in Alaskan balsam poplar: Potential importance of metabolic turnover.Oecologia 88:401–406.

    Google Scholar 

  • Rhoades, D.G. 1983. Herbivore population dynamics and plant chemistry, pp. 155–220,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.

    Google Scholar 

  • Rhoades, D.G., andCates, R.G. 1976. Toward a general theory of plant herbivore chemistry, pp. 168–213,in J.W. Wallace and R.L. Mansell (eds.). Biochemical Interactions between Plants and Insects. Plenum Press, New York.

    Google Scholar 

  • Rice, R.L., Lincoln, D.E., andLangenheim, J.H. 1978. Palatability of monoterpenoid compositional types ofSatureja douglasii to a generalist molluscan herbivoreAriolimax dolichophallus.Biochem. Syst. Ecol. 6:45–53.

    Google Scholar 

  • Richardson, D.R., andWilliamson, G.B. 1988. Allelopathic effects of shrubs of sand pine scrub on pines and grasses of the sand hills.For. Sci. 34:592–605.

    Google Scholar 

  • Ross, J.D., andSombero, C. 1991. Environmental control of essential oil production in Mediterranean plants, pp. 64–94,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.

    Google Scholar 

  • Rothschild, M. 1985. British aposematic Lepidoptera, pp. 9–62,in J.H. Heath and A.M. Emmet (eds.). The Moths and Butterflies of Great Britain and Ireland. Harley Books, Essex, England.

    Google Scholar 

  • Schuck, H.J. 1982. Monoterpenes and resistance of conifers to fungi, pp. 169–175,in H.M. Heybrock, B.M. Stephan, and K. Wissenberg, Resistance to Diseases and Pests in Forest Trees. Pudoc, Wageningen.

    Google Scholar 

  • Schuh, B.A., andBenjamin, D.M. 1984. The chemical feeding ecology ofNeodiprion hubiosus Schedl,N. rugifrons Midd andN. lecontei (Fitch) on Jack pine (Pinus banksiana Lamb).J. Chem. Ecol. 10:1071–1079.

    Google Scholar 

  • Schultz, J.C. 1983. Impact of variable plant defensive chemistry on susceptibility of insects to natural enemies, pp. 37–54,in P.A. Hedin (ed.). Plant Resistance to Insects, ACS Symposium Series 208. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Schwartz, C.C., Regelin, W.L., andNagy, J.G. 1980. Deer preference for juniper forage and volatile oil-treated foods.J. Wildl. Manage. 44:114–120.

    Google Scholar 

  • Scott, A.L., andTaylor, T.N. 1983. Plant/animal interactions during the upper Carboniferous.Bot. Rev. 49:259–307.

    Google Scholar 

  • Simms, E.L., andFritz, R.S. 1990. The ecology and evolution of host plant resistance to insects.Trends Ecol. Evol. 5:356–360.

    Google Scholar 

  • Simoneit, T., Brendt, R.T., Grimalt, J.O., Wang, T.G., Cox, R.E., Hatcher, P.G., andNissenbaum, A. 1986. Cyclic terpenoids of contemporary resinous plant detritus and fossil woods, ambers and coals, pp. 877–889,in Advances in Organic Chemistry, Organic Chemistry 10. Pergamon Press, Oxford.

    Google Scholar 

  • Sinclair, A.R.E., Jagia, M.K., andAnderson, R.J. 1988. Camphor from juvenile white spruce as an antifeedant for snowshoe hares.J. Chem. Ecol. 14:1505–1541.

    Google Scholar 

  • Singh, I.D., andWeaver, J.B., Jr. 1972. Growth and infestation on boll weevels on normal glanded, glandless and high gossypol strains of cotton.J. Econ. Entomol. 65:821–824.

    Google Scholar 

  • Stephen, F.M., andPaine, T.D. 1985. Seasonal patterns of host tree resistance to fungal associates of the southern pine beetle.Z. Angew. Entomol. 99:113–122.

    Google Scholar 

  • Stephenson, A.G. 1982. Iridoid glycosides in the nectar ofCatalpa speciosia are unpalatable to nectar thieves.J. Chem. Ecol. 8:1025–1034.

    Google Scholar 

  • Stewart, G.H., andBurrows, L.E. 1989. The impact of white-tailed deerOdocoileus virginianus on the regeneration in the coastal forests of Stewart Island, New Zealand.Biol. Conserv. 49:275–293.

    Google Scholar 

  • Stipanovic, R.D., Williams, H.J., andSmith, L.A. 1986. Cotton terpenoid inhibition ofHeliothis virescens development, pp. 79–94,in M.A. Green and P.A. Hedin (eds.). Natural Resistance of Plants to Pests—Role of Allelochemicals, American Chemical Society Symposium Series 296. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Strobel, G.A., andSugawara, F. 1986. The pathogenicity ofCeratocystis montia to lodgepole pine.Can. J. Bot. 64:113–116.

    Google Scholar 

  • Stubblefield, S.P., Taylor, T.N., andBeck, C.B. 1985. Studies of Paleozoic fungi. V. Wood-decaying fungi inCallixylon newburyi from the Upper Devonian.Am. J. Bot. 72:1765–1774.

    Google Scholar 

  • Sturgeon, K.B. 1979. Monoterpene variation in ponderosa pine xylem related to western pine predation.Evolution 33:803–814.

    Google Scholar 

  • Sturgeon, K.B., andMitton, J.B. 1982. Evolution of bark beetle communities, pp. 350–384,in J.B. Mitton and K.B. Sturgeon (eds.). Bark Beetles in North American Conifers: A System for Study of Evolutionary Biology. University of Texas Press, Austin.

    Google Scholar 

  • Sturgeon, K.B., andMitton, J.B. 1986. Biochemical diversity of ponderosa pine and predation by bark beetles (Coleoptera: Scolytidae).J. Econ. Entomol. 79:1064–1068.

    Google Scholar 

  • Synder, M.A. 1992. Selective herbivory by Abert's squirrel mediated by chemical variability in ponderosa pine.Ecology 78:1730–1741.

    Google Scholar 

  • Snyder, M.A. 1993. Interactions between Abert's squirrel and ponderosa pine: The relationship between selective herbivory and host plant fitness.Am. Nat. 141:866–879.

    Google Scholar 

  • Takabayashi, J., andDicke, M. 1993. Volatile allelochemicals that mediate interactions in a tritrophic system consisting of predatory mites, spider mites and plants, pp. 280–295,in H. Kawanabee, J.E. Cohen, and K. Iwasaki (eds.). Mutalism and Community Organization. Oxford University Press, New York.

    Google Scholar 

  • Takabayashi, J., Dicke, M., andPosthumus, M.A. 1991. Induction of indirect defense against spider-mite in uninfested lima bean leaves.Phytochemistry 30:1459–1462.

    Google Scholar 

  • Takabayashi, J., Dicke, M., andPosthumus, M.A. 1994. Voatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors.J. Chem. Ecol. 20:1329–1354.

    Google Scholar 

  • Thompson, J.N. 1988. Coevolution and alternative hypotheses on insect/plant interactions.Ecology 69:893–895.

    Google Scholar 

  • Tilghman, N.G. 1989. Impacts of white-tailed deer on forest regeneration in northwestern Pennsylvania.J. Wildl. Manage. 53:524–532.

    Google Scholar 

  • Tuomi, J. 1992. Toward integration of plant defense theories.Trends Ecol. Evol. 7:365–367.

    Google Scholar 

  • Turlings, T.C.J., andTumlinson, J.H. 1992. Systemic release of chemical signals by herbivore-injured corn.Proc. Natl. Acad. Sci. U.S.A. 89:8399–8402.

    PubMed  Google Scholar 

  • Turlings, T.C.J., Tumlinson, J.H., Heath, P.R., Praveaux, A.T., andDoolittle, R.E. 1991. Isolation and identification of alleochemicals that attract the larval parasitoid,Cotasia marginiventra (Cresson) to the microhabitat of one of its hosts.J. Chem. Ecol. 17:2235–2251.

    Google Scholar 

  • Turlings, T.C.J., McCall, P.J., Alborn, H.T., andTumlinson, J.H. 1993. An elicitor in caterpillar oral secretions that induces corn seedling to emit chemical signals attractive to parasite wasps.J. Chem. Ecol. 19:411–425.

    Google Scholar 

  • Vandemeer, J.H. 1980. Indirect mutualism: Variation on a theme by Stephen Levine.Am. Nat. 116:441–442.

    Google Scholar 

  • Veblen, T.T., Mermoz, M., Martin, C., andRamilo, E. 1989. Effects of exotic deer on forest regeneration and composition in northern Patagonia.J. Appl. Ecol. 26:711–724.

    Google Scholar 

  • Verhoeff, K. 1974. Latent infections by fungi.Annu. Rev. Phytopathol. 12:99–110.

    Google Scholar 

  • Vitousek, P.M., andMattson, P.A. 1992. Tropical forests and trace gases: Potential interactions between tropical biology and the atmospheric sciences.Biotropica 24:233–239.

    Google Scholar 

  • Von Rudloff, E. 1975. Volatile oil analysis in chemosystematic studies of North American conifers.Biochem. Syst. Ecol. 2:131–168.

    Google Scholar 

  • Von Rudloff, E., andRehfelt, G. 1980. Chemosystematic studies in the genusPseudotsuga. IV Inheritance and geographic variation in the leaf oil terpenes of Douglas-fir from the Pacific Northwest.Can. J. Bot. 58:546–556.

    Google Scholar 

  • Wagner, M.R., Benjamin, D.M., Clancy, K.M., andSchuh, B.A. 1983. Influence of diterpene resin acids on feeding and growth of larch sawflyPristiphora erichsonii (Harby).J. Chem. Ecol. 9:119–127.

    Google Scholar 

  • Wagner, M.R., Clancy, K.M., andTinus, R. 1990. Seasonal patterns in the allelochemicals ofPseudotsuga menziesii, Picea engelmannii andAbies concolor.Biochem. Syst. Ecol. 18:215–220.

    Google Scholar 

  • Weidenhamer, J.D., Hartnett, D.C., andRomeo, J.T. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants.J. Appl. Ecol. 26:613–624.

    Google Scholar 

  • Weidenhamer, J.D., Macias, F.N., Fischer, N.H., andWilliamson, G.B. 1993. Just how soluble are monoterpenes?J. Chem. Ecol. 19:1799–1807.

    Google Scholar 

  • Welch, B.L., McArthur, D.E., andDavis, J.N. 1981. Differential preference for wintering mule deer for accessions of big sagebrush and for black sagebrush.J. Range Manage. 34:409–411.

    Google Scholar 

  • Welch, B.L., Pederson, J.C., andRodriguez, R.L. 1989. Monoterpenoid content of sage grouse ingesta.J. Chem. Ecol. 15:961–969.

    Google Scholar 

  • White, C.S. 1994. Monoterpenes: their effects on ecosystem nutrient cycling.J. Chem. Ecol. 20:1381–1406.

    Google Scholar 

  • White, S.M., Welch, B.L., andFlinders, J.T. 1982. Monoterpenoid content of pygmy rabbit stomach ingesta.J. Range Manage. 35:107–109.

    Google Scholar 

  • Whitman, D.W. 1988. Allelochemical interactions among plants, herbivores and their predators, pp. 11–64,in P. Barbosa and D.K. Letourneau (eds.).Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Whitney, G.C. 1984. Fifty years of change in the arboreal vegetation of Heart's Content, and old-growth hemlock-white pine-northern hardwood stand.Ecology 65:403–408.

    Google Scholar 

  • Williams, G.B., Fischer, N.H., Richardson, D.R., andde la Pena, A. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub,Conradina canescens.J. Chem. Ecol. 15:1567–1577.

    Google Scholar 

  • Williams, H.J., Elzen, G.W., andVinson, S.B. 1988. Parasitoid-host-plant interactions emphasizing cotton (Gossypium), pp. 171–200,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Winer, D.M., Arey, J., Atkinson, R., Aschmann, S.H., Long, W.D., Morrison, C.L., andOlszyk, D.M. 1992. Emission rates of organics from vegetation in California's Central Valley.Atmos. Environ. 26A:2647–2659.

    Google Scholar 

  • Wood, D.L. 1982. The role of pheromones, kairomones and allomones on the host selection and colonization behavior of bark beetles.Annu. Rev. Entomol. 27:411–446.

    Google Scholar 

  • Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs #6, 1359 pp.

  • Zavarin, E., andSnajberk, K. 1975.Pseudotsuga menziesii.Biochem. Syst. Ecol. 2:121–129.

    Google Scholar 

  • Zavarin, E., Snajberk, K., andCritchfield, W.B. 1977. Terpenoid chemosystematic studies ofAbies grandis.Biochem. Syst. Ecol. 15:81–93.

    Google Scholar 

  • Zavarin, E., Snajberk, K., andCool, L. 1990. Monoterpene variability ofPinus monticola wood.Biochem. Syst. Ecol. 18:117–124.

    Google Scholar 

  • Zimmermann, P.R., Greenberg, J.P., andWestberg, C.E. 1988. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer.J. Geophys. Res. 93:1407–1416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langenheim, J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. J Chem Ecol 20, 1223–1280 (1994). https://doi.org/10.1007/BF02059809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02059809

Key Words

Navigation