Journal of Chemical Ecology

, Volume 20, Issue 5, pp 1161–1177 | Cite as

A new bioassay for testing plant extracts and pure compounds using red flour beetleTribolium castaneum Herbst

  • Miguel E. Alonso-Amelot
  • Jorge L. Avila
  • L. Daniel Otero
  • Flor Mora
  • Berenice Wolff
Article

Abstract

We designed a new bioassay to test plant extract activity against stored product pests. Plant compounds were added to feed disks composed of wheat flour and yeast and fed to the red flour bettle (Tribolium castaneum). By measuring insect mass, disk mass, and insect mortality over time it was possible to calculate a phagodepression index, an antifeedant index, the amount of treatment chemical ingested by the beetles, the mortality rate, and the efficiency of conversion of ingested food. The assay was performed for 60 hr to allow for possible habituation effects and to discriminate between phagodeterrency and physiological stress caused by treatments. α- and β-Pinene, eugenol, kaurenic acid, sparteine, essential oils ofMinthostachis mollis andMelaleuca quinquenervia, and extracts ofSapindus saponaria were tested. Using this assay we detected the presence of both phagodepressant and phagostimulant compounds inS. saponaria extracts, and we quantified the pronounced effects of sparteine onT. castaneum.

Key Words

Bioassay red flour beetle Tribolium castaneum Coleoptera Tenebrionidae ECI Minthostachis mollis Melaleuca quinquenervia Sapindus saponaria α-pinene β-pinene eugenol kaurenic acid sparteine phagodepression phagostimulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboutabl, E.A., EL-Thoamy, S.T., Pooter, H.C. De, andBuyck, L.F. De. 1991. A comparative study of the essential oils from three Melaleuca species growing in Egypt.Flav. Frag. J. 6:139–141.Google Scholar
  2. Ahmed, S., Grainge, M., Hylin, J.W., Mitchel, W.C., andLitsinger, J.A. 1984. Some promising plant species for use as pest control agents under traditional farming systems. Proc. 2nd Int. Neem Conf. Rauischholzhausen 1983, pp. 565–580.Google Scholar
  3. Alkofahi, A., Rupprecht, J.K., Anderson, J.E., McLaughlin, J.L., Mikolajczak, K.L., andScott, B.A. 1989. Search for new pesticides from higher plants, pp. 25–43,in J.T. Arnason, B.J.R. Philogene, and P. Morand (eds). Insecticides of Plant Origin. ACS Symposium Series 387, Washington, D.C.Google Scholar
  4. Allsopp, P.G. 1992. Anethole and eugenol as attractants forLiparetrus atriceps Mackay (Coleoptera: Scarabeidae).Coleopt. Bull. 46:159–160.Google Scholar
  5. Bernays, E.A. 1989. Insect behavior at the leaf surface and learning as aspects of host plant selection.Experientia 45:215–222.Google Scholar
  6. Bernays, E.A., andChapman, R.F. 1987. Chemical deterrence by plants. pp. 107–116,in J.H. Law (ed.). Molecular Entomology. UCLA Symposium on Molecular and Cellular Biology 49. New Series. Alan R. Liss, New York.Google Scholar
  7. Byers, J.A., Lanne, B.S., Schlyter, K., Löfqvist, J., andBergström, G. 1985. Olfactory recognition of host-tree susceptibility by pine shot beetles.Naturwissenschaften. 72:324–326.Google Scholar
  8. Carroll, S.P. 1988. Contrasts in reproductive ecology between temperature and tropical populations ofJadera haematoloma, a mate guardian hemipteran (Rhopalidae).Ann. Entomol. Soc. Am. 81:54–63.Google Scholar
  9. Carvajal, G., andThilly, W. 1988. Mutagenic activity ofMinthostachis mollis in AHH1 lymphoblast cells.Plant Foods Human Nutr. 38:105–114.Google Scholar
  10. Chenier, J.V.R., andPhilogene, B.J.R. 1989. Field Responses of Certain Forest Coleoptera to Conifer Monoterpenes and Ethanol.J. Chem. Ecol. 15:1729–1746.Google Scholar
  11. Clancy, K.M., Foust, R.D., Huntsberger, T.G., Whitaker, J.G., andWhitaker, D.M. 1992. Technique for using microencapsulated terpenes in lepidopteran artificial diets.J. Chem. Ecol. 18:543–560.Google Scholar
  12. Coley, P.D., Bryant, J.P., andChapin, F.S. 1985. Resource availability and plant antiherbivore defense.Science 230:895–899.Google Scholar
  13. Collins, P.J. 1990. A new resistance to pyrethroids inTribolium castaneum (Herbst).Pestic. Sci. 28:101–115.Google Scholar
  14. Escoubas, P., Fukushi, Y., Lajide, L., andMizutani, J. 1992. A new method for fast isolation of insect antifeedant compounds from complex mixtures.J. Chem. Ecol. 18:1819–1832.Google Scholar
  15. Escoubas, P., Lajide, L., andMizutani, J. 1993. An improved leaf disk antifeedant bioassay and its application for the screening of Hokkaido plants.Entomol. Exp. Appl. 66:99–107.Google Scholar
  16. Everaerts, C., Bonnard, O., Pasteels, J.M., Roisin, Y., andKonig, W.A. 1990. (+)-α-Pinene in the defensive secretion ofNasutitermes princeps (Isoptera: Termetidae).Experientia 46:227–230.Google Scholar
  17. Feeny, P.P. 1976. Plant apparency and chemical defense.Recent Adv. Phytochem. 10:1–40.Google Scholar
  18. Fuhrer, E., Hausmann, B., andWiener, L. 1991. Bark beetle (Coleoptera: Scolytidae) colonization and terpene patterns in the bark of Norway spruce (Picea abies Karst.) trap trees.J. Appl. Entomol. 112:113–123.Google Scholar
  19. Gizen, M., Lewinsohn, E., Savage, T.J., andCroteau, R.B. 1993. Conifer monoterpenes: biochemistry and bark beetle chemical ecology, pp. 8–22,in R. Teranishi, R.G. Buttery, and H. Sugisawa (eds.). Bioactive Volatile Compounds from Plants. ACS Symposium Series 525. American Chemical Society, Washington, D.C.Google Scholar
  20. Green, M.B., andHedin, P.A. (eds.) 1986. Natural Resistance of Plants to Pests: Roles of Allelochemicals. ACS Symposium Series. American Chemical Society, Washington, D.C.Google Scholar
  21. Hamilton, J.G.C., Gough, A.J.E., Staddon, B.W., andGames, D.E. 1985. Multichemical defense of plant bugHotea gambiae (Heteroptera: Scultelleridae) (E)-2-hexenol from abdominal gland in adults.J. Chem. Ecol. 11:1399–1409.Google Scholar
  22. Hastings, A., andConstantino, R.F. 1987. Cannibalistic egg-larva interaction inTribolium; An explanation in the oscillation in population numbers.Am. Nat. 130:36–52.Google Scholar
  23. Hunt, D.W.A., Borden, J.H., Lindgern, B.S., andGries, G. 1989. The role of autooxidation of α-pinene in the production of pheromones ofDendroctomus ponderosae (Coleoptera: Scolytidae).Can. J. For. Res. 19:1275–1282.Google Scholar
  24. Jakupovic, J., Schuster, A., Ganzer, U., Bohlmann, F., andBoldt, P.E. 1990. Sesqui- and diterpenes from Baccharis species.Phytochemistry 29:2217–2222.Google Scholar
  25. Jermy, T. 1984. Evolution of insect host-plant relationships.Am. Nat. 124:609–630.Google Scholar
  26. Jermy, T. 1990. Prospects of antifeedant approach to insect control. A critical review.J. Chem. Ecol. 16:3151–3166.Google Scholar
  27. Jermy, T., Bernays, E.A., andSzentesi, A. 1982. The effect of repeated exposure to feeding deterrents on their acceptability to phytophagous insects, pp. 25–32,in H. Visser and A. Minks (eds.). Proc. 5th International Symposium on Insect-Plant Relationships. Pudoc, Wageningen.Google Scholar
  28. Jilani, G., Saxena, R.C., andRueda, B.P. 1988. Repellent and growth inhibiting effects of turmeric oil, sweetflag oil, neem oil, and “Margosan-O,” on red flour beetle (Coleoptera: Tenebrionidae).J. Econ. Entomol. 81:1226–1230.Google Scholar
  29. Johnson, N.D., andBentley, B.L. 1988. Effects of dietary protein and lupine alkaloids on growth and survivorship ofSpodoptera eridania.J. Chem. Ecol. 14:1391–1403.Google Scholar
  30. Kahn, A.R., andMannan, A. 1991. Stored-products entomology in the tropics.Agric. Zool. Rev. 4:67–95Google Scholar
  31. Kakuta, H., Seki, T., andHashidoko, Y. 1992. Ent-kaurenic acid and its related compounds from glandular trichome exudate leaf extracts ofPolymnia souchifolia.Biosci. Biotechnol. Biochem. 56:1562–1564.Google Scholar
  32. Kimata, N., Nakashima, T., Kokubun, S., Nakayama, K., Mitoma, Y., Kitahara, T., Yata, N., andTanaka, O. 1983. Saponins of pericarps ofSapindus mukurossi and solubilization of monodesmosides by bidesmosides.Chem. Pharm. Bull. (Tokyo) 31:1998–2005.Google Scholar
  33. Kinghorn, A.D., Selim, M.A., andSmolenski, S.J. 1980. Alkaloid distribution in some new worldLupinus species.Phytochemistry 19:1705–1710.Google Scholar
  34. Klein, M.G., andEdwards, D.C. 1989. Captures ofPopillia lewisi (Coleoptera: Scarabeidae) and other scarabs on Okinawa with Japanese beetle lures.J. Econ. Entomol. 82:101–103.Google Scholar
  35. Klocke, J. 1989. Plant compounds as models for insect control agents, pp. 104–144,in H. Wagner, J. Hikino, and N.R. Farnsworth (eds.). Economic and Medicinal Plant Resarch, Vol. 3. Academic Press, New York.Google Scholar
  36. Kostal, V. 1992. Orientation behavior of newly hatched larvae of the cabbage maggot,Delia radicum (L.) (Diptera: Anthomyiidae), to volatile plant metabolites.J. Insect Behav. 5:61–70.Google Scholar
  37. Kubo, I. 1991. Screening techniques for insect-plant interactions, pp. 179–194,in K. Hostettmann (ed.). Methods in Plant Biochemistry, Vol. 6, Assays for Bioactivity. Academic Press, New York.Google Scholar
  38. Kumar, B.H., andThakur, S.S. 1988. Certain non-edible seed oils as feeding deterrents againstSpodoptera litura Fb.J. Oil Technol. Assoc. India 20:63–65.Google Scholar
  39. Lance, O.R., andElliot, N.C. 1991. Seasonal responses of corn rootworm beetles (Coleoptera: Chrysomelidae) to non-pheromonal attractants.J. Entomol. Sci. 26:188–196.Google Scholar
  40. Ladd, T.L., Jr., Stinner, B.R., andKrueger, H.R. 1983. Eugenol, a new attractant for the northern corn rootworm (Coleoptera: Chrysomelidae).J. Econ. Entomol. 76:1049–1051.Google Scholar
  41. Lewis, A.C., andVan Emden, H.F. 1986. Assays for insect feeding, pp. 95–119,in J.R. Miller and T.A. Miller (eds.). Insect-Plant Interactions. Springer-Verlag, New York.Google Scholar
  42. Lindstrom, M., Norin, T., Valterová, I., andVrkoc, J. 1990. Chirality of the monoterpene alarm pheromone of termites.Naturwissenschaften 77:134–135.Google Scholar
  43. Liu, J.K., Han, W.X., Jia, Z.J., Ju, Y., andWang, H.Q. 1991. Two sesquiterpene alkaloids fromCelastrus angulatus.Phytochemistry 30:3437–3440.Google Scholar
  44. McGovern, T.P., andLadd, T.L., Jr. 1990. Attractants for the northern corn rootworm (Coleoptera: Chrysomelidae): Alkyl and alkenyl eugenols.J. Econ. Entomol. 83:1316–1320.Google Scholar
  45. Mostafa, T.S. 1988. The efficiency of neem flower and fruit powders againstTrogoderma granarium Everts adults infesting stored rice grains (Coleoptera: Dermestidae).Bull. Entomol. Soc. Egypt Econ. Ser. C 7:93–99.Google Scholar
  46. Munakata, K. 1977. Insect feeding deterrents in plants, pp. 93–102,in H.H. Shorey and J.J. McKelvey (eds.). Chemical Control of Insect Behavior. Wiley, New York.Google Scholar
  47. Myers, R.L. 1983. Site susceptibility to invasion by the exotic treeMelaleuca quinquenervia in southern Florida.J. Appl. Ecol. 20:645–658.Google Scholar
  48. Nordenhem, H., andEidmann, H.H. 1991. Response of the pine weevilHylobius abietis L. (Coleoptera: curculionidae) to host volatiles in different phases of its adult life cycle.J. Appl. Entomol. 112:353–358.Google Scholar
  49. Park, T., Mertz, D.B., Grodzinski, W., andPrus, T. 1965. Cannibalistic predation in populations of flour beetles.Physiol. Zool. 38:289–321.Google Scholar
  50. Pickett, J.A., Wadhams, L.J., andWoodcock, C.M. 1989. Chemical Ecology and pest management: Some recent insights.Insect Sci. Appl. 10:740–750.Google Scholar
  51. Qureshi, S.A., Muhiuddin, S., andQureshi, R.A. 1988. Repellent values of some common indigenous plants against red flour beetleTribolium castaneum Herbst.Pak. J. Zool. 20:201–207.Google Scholar
  52. Rhoades, D.F., andCates, R.G. 1976. Towards a general theory of plant antiherbivore chemistry.Recent Adv. Phytochem. 10:168–213.Google Scholar
  53. Ribeiro, S.T. 1989. Group effects of aposematism inJadera haematoloma (Hemiptera: Rhopalidae).Ann. Entomol. Soc. Am. 82:466–475.Google Scholar
  54. Roisin, Y., Everaerts, C., Pasteels, J.M., andBonnard, O. 1990. Caste-dependent reactions of soldier defense secretion and chiral alarm/recruitment reactions inNasutitermes princeps.J. Chem. Ecol. 16:2865–2875.Google Scholar
  55. Rosenthal, G.A., andBerenbaum, M.R. (eds.). 1991. Herbivores: Their Interaction with Secondary Plant Metabolites, Vol 1: The Chemical Participants, 2nd ed., Academic Press, San Diego, California.Google Scholar
  56. Schoonhoven, L.M. 1969. Sensitivity changes in some insect chemoreceptors and their effects on food selection behavior.Proc. K. Ned. Akad. Wet. C72:491–498.Google Scholar
  57. Schroeder, L.M. 1987. Attraction of the bark beetleTomicus piniperda and some other bark and wood living beetles to the host volatiles α-pinene and ethanol.Entomol. Exp. Appl. 46:203–210.Google Scholar
  58. Schroeder, L.M., andLindelow, A. 1989. Attraction of Scolytids and associated beetles by different absolute amounts of α-pinene and ethanol.J. Chem. Ecol. 15:807–817.Google Scholar
  59. Sharaby, A. 1987. Insecticidal effects of some terpenes against the cotton leafwormSpodoptera littoralis Boisd.Bull Entomol. Soc. Egypt Econ. Ser. 16:31–39.Google Scholar
  60. Sharma, R.N., Gupta, A.S., Patwardham, S.A., Hebbalkar, D.S., Tare, V., andBhonde, S.B. 1992. Bioactivity of Lamiaceae plants against insects.Indian J. Exp. Biol. 30:244–246.Google Scholar
  61. Shore, T.L., Hall, P.M., andMaher, T.F. 1990. Grid baiting of spruce stands with frontalin for the preharvest containment of the spruce beetleDendroctonus rufipennis (Kirby) (Coleoptera: Scolytidae).J. Appl. Entomol. 109:315–319.Google Scholar
  62. Shukla, R.M., Chand, G., andSaini, M.L. 1992. Laboratory evaluation of effectiveness of edible oils against three species of stored grain insects.Plant Protect. Bull. (Farifabad) 44:14–15.Google Scholar
  63. Sighamony, S., Anees, I., andChandrakala, T.S. 1984. Natural products as repellents forTribolium castaneum Herbst.Int. Pest Control 26:156–157.Google Scholar
  64. Smith, C.N. (ed.). 1966. Insect Colonization and Mass Production. Academic Press, New York.Google Scholar
  65. Sokoloff, A. 1974. The Biology of Tribolium, Vol. 2. Oxford University Press, Oxford.Google Scholar
  66. Stark, J.D., andVargas, R.I. 1992. Differential response of male oriental fruitfly (Diptera: Tephritidae) to colored traps baited with methyl eugenol.J. Econ. Entomol. 85:808–812.Google Scholar
  67. Stevens, L. 1989. The genetics and evolution of cannibalism in flour beetles.Evolution 43:169–179.Google Scholar
  68. Subramanyan, Rh., Harein, P.K., andCutkomp, L.K. 1989. Organophosphate resistance in adults of red flour beetle (Coleoptera: Tenebrionidae) and sawtoothed grain beetle (Coleoptera: Cucujidae) infesting barley stored on farms in Minnesota.J. Econ. Entomol. 82:989–995.Google Scholar
  69. Usubillaga, A.N., andCapra, M.C. 1988. Chemical constituents ofEspeletia semiglobulata.Fitoterapia 59:383–3834.Google Scholar
  70. Wahab, S.M.A., andSelim, M.A. 1985. Lipids and flavonoids ofSapindus saponaria.Fitoterapia 56:167–168.Google Scholar
  71. Waldbauer, G.P. 1968. The consumption and utilization of food by insects.Recent Adv. Insect Physiol. 5:229–288.Google Scholar
  72. Yaro, N.D., Krysan, J.L., andLadd, T.L., Jr. 1987.Diabrotica cristata (Coleoptera: Chrysomelidae): attraction to eugenol and related compounds compared withD. barberi andD. virgifera virgifera.Environ. Entomol. 16:126–128.Google Scholar
  73. Zar, J.H. 1984. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  74. Zettler, J.L., andCuperus, G.W. 1990. Pesticide resistance inTribolium castaneum (Coleoptera: Tenebrionidae) andRhyzopertha dominica (Coleoptera: Bostrichidae) in wheat.J. Econ. Entomol. 83:1677–1681.Google Scholar
  75. Zettler, J.L. 1991. Pesticide resistance inTribolium castaneum andT. confusum (Coleoptera: Tenebrionidae) from flour mills in the United States.J. Econ. Entomol. 84:763–767.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Miguel E. Alonso-Amelot
    • 1
  • Jorge L. Avila
    • 1
  • L. Daniel Otero
    • 1
  • Flor Mora
    • 1
  • Berenice Wolff
    • 1
  1. 1.Grupo de Química Ecológica, Departamento de Química Facultad de CienciasUniversidad de Los AndesMéridaVenezuela

Personalised recommendations