Advertisement

Journal of Chemical Ecology

, Volume 20, Issue 5, pp 1143–1160 | Cite as

Purification and preliminary characterization of a frog-derived proteinaceous chemoattractant eliciting prey attack by checkered garter snakes (Thamnophis marcianus)

  • Ruddy Wattiez
  • Christophe Remy
  • Paul Falmagne
  • Gerard Toubeau
Article

Abstract

A potent proteinaceous chemoattractant, eliciting prey attack by checkered garter snakes (Thamnophis marcianus) was isolated from aqueous washes of the common frogRana temporaria and purified by preparative continuous-elution electrophoresis. The biological activity of the frog crude extract or of the purified chemoattractive protein, measured by a snake bioassay, was unaffected by freezing, lyophilization, or dialysis but was lost after proteolytic digestion. The purified chemoattractant is glycosylated, has an apparent molecular mass of 24 kDa, estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE), and a pI of 4.8. It gave one spot in two-dimensional electrophoresis. The bioassay showed that this protein is highly attractive to snakes. The lowest concentration yielding positive responses in the snake bioassay was approximately 25 µg/ml. These results suggest that a water-soluble Mr 24 kDa glycoprotein molecule produced by the common frog may be a vomeronasal stimulus used by checkered garter snakes for prey recognition.

Key Words

Chemoreception chemical cues frog extract vomeronasal organ garter snake Thamnophis marcianus Rana temporaria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the priniciple of protein-dye binding.Anal. Biochem. 72:248–254.PubMedGoogle Scholar
  2. Burghardt, G.M. 1966. Stimulus control of the prey attack response in naive garter snakes.Psychon. Sci. 4:37–38.Google Scholar
  3. Burghardt, G.M. 1970. Chemical perception in reptiles, pp. 241–308,in J.W. Johnston, Jr., D.G. Moulton, and A. Turk (eds.). Advances in Chemoreception. Appleton Century Crofts, New York.Google Scholar
  4. Burghardt, G.M. 1980. Behavioral and stimulus correlates of vomeronasal functioning in reptiles: Feeding, grouping, sex, and tongue use, pp. 275–301,in D. Muller-Schwarze and R.M. Silverstein (eds.). Chemical Signals in Vertebrates and Aquatic Invertebrates. Plenum Press, New York.Google Scholar
  5. Burghardt, G.M. 1990. Chemically mediated predation in vertebrates: diversity, ontogeny and information, pp. 475–499,in D. McDonald, D. Muller-Schwarze, and S. Natynczuk (eds.). Chemical Signals in Vertebrates, Vol. 5. Oxford University Press, Oxford.Google Scholar
  6. Burghardt, G.M. 1992. Prior exposure to prey cues influences chemical prey preferences and prey choice in neonatal garter snakes.Anim. Behav. 44:787–789.Google Scholar
  7. Burghardt, G.M. 1993. The comparative imperative—genetics and ontogeny of chemoreceptive prey responses in natricine snakes.Brain Behav. Evol. 41:138–146.PubMedGoogle Scholar
  8. Burghardt, G.M., Goss, S.E., andSchell, F.M. 1988. Comparison of earthworm- and fish-derived chemicals eliciting prey attack by garter snakes (Thamnophis).J. Chem. Ecol. 14:855–881.Google Scholar
  9. Cooper, W.E., Jr., andBurghardt, G.M. 1990. A comparative analysis of scoring methods for chemical discrimination of prey by squamate reptiles.J. Chem. Ecol. 16:45–65.Google Scholar
  10. Conant, R. 1975. A Field Guide to Reptiles and Amphibians of Eastern and Central North America. Houghton Mifflin Company, Boston.Google Scholar
  11. Deutscher, M.P. 1990. Guide to protein purification. Methods Enzymol. 182:425–441.PubMedGoogle Scholar
  12. Drummond, H.M. 1979. Stimulus control of amphibious predation in the northern water snake (Nerodia sipedon sipedon).Z. Tierpsychol. 50:18–44.Google Scholar
  13. Drummond, H. 1983. Aquatic foraging in garter snakes: A comparison of specialists and generalists.Behaviour 86:1–30.Google Scholar
  14. Drummond, H. 1985. The role of vision in the predatory behaviour of natricines snakes.Anim. Behav. 33:206–215.Google Scholar
  15. Graves, B.M. 1993. Chemical delivery to the vomeronasal organs and functional domain of squamate chemoreception.Brain Behav. Evol. 41:198–202.PubMedGoogle Scholar
  16. Halpern, M. 1987. The organization and function of the vomeronasal system.Ann. Rev. Neurosci. 10:325–362.PubMedGoogle Scholar
  17. Halpern, M., andFrumin, N. 1979. Roles of the vomeronasal and olfactory systems in prey attack and feeding in adult garter snakes.Physiol. Behav. 22:1183–1189.PubMedGoogle Scholar
  18. Halpern, M., andKubie, J.L. 1980. Chemical access to the vomeronasal organs of garter snakes.Physiol. Behav. 24:367–371.PubMedGoogle Scholar
  19. Halpern, M., Schulman, N., Scribani, L., andKirschenbaum, D.M. 1984. Characterization of vomeronasally-mediated response-eliciting components of earthworm wash-II.Pharmacol. Biochem. Behav. 21:655–662.PubMedGoogle Scholar
  20. Henzel, W.J., Rodriguez, H., Singer, A.G., Stults, J.T., Macrides, F., Agosta, W.C., andNiall, H. 1988. The primary structure of aphrodisin.J. Biol. Chem. 263:16682–16687.PubMedGoogle Scholar
  21. Inouchi, J., Wang, D., Jiang, X.C., Kubie, J., andHalpern, M. 1993. Electrophysiological analysis of the nasal chemical senses in garter snakes.Brain Behav. Evol. 41:171–182.PubMedGoogle Scholar
  22. Jiang, X.C., Inouchi, J., Wang, D., andHalpern, M. 1990. Purification and characterization of a chemoattractant from electric shock-induced earthworm secretion, its receptor binding, and signal transduction through the vomeronasal system of garter snakes.J. Biol. Chem. 265:8736–8744.PubMedGoogle Scholar
  23. Kahmann, H. 1932. Sinnesphysiologische Studien an Reptielen—I. Experimentalle Untersuchungen uber das Jacobsonische Organ der Eidechsen und Schlangen.Zool. Jb. Abt. Allg. Zool. Physiol. 51:173–238.Google Scholar
  24. Kirschenbaum, D.M., Schulman, N., Yao, P., andHalpern, M. 1985. Chemo-attractant for the garter snake: Characterization of vomeronasally-mediated response-eliciting components of earthworm wash-III.Comp. Biochem. Physiol. 82B:447–453.Google Scholar
  25. Kirschenbaum, D.M., Schulman, N., andHalpern, M. 1986. Earthworms produce a collagenlike substance detected by the garter snake vomeronasal system.Proc. Natl. Acad. Sci. U.S.A. 83:1213–1216.PubMedGoogle Scholar
  26. Kubie, J.L., andHalpern, M. 1978. Garter snake trailing behavior: Effects of varying pre-extract concentration and mode of prey-extract presentation.J. Comp. Physiol. Psychol. 92:362–373.PubMedGoogle Scholar
  27. Kubie, J.L., andHalpern, M. 1979. Chemical senses involved in garter snake prey trailing.J. Comp. Physiol. Psychol. 93:648–667.Google Scholar
  28. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685.PubMedGoogle Scholar
  29. Leach, B.S., Collawn, J.F., andFish, W.W. 1980. Behavior of glycopeptides with empirical molecular weight estimation methods. 1. In sodium dodecyl sulfate.Biochemistry 19:5734–5741.PubMedGoogle Scholar
  30. Macrides, F., andSinger, A.G. 1991. A hamster macromolecular pheromone belongs to a family of transport and odorant binding proteins, pp. 169–185,in C.J. Wysocki, and M.R. Kare (eds.). Chemical Senses, Vol. 3. Genetics of Perception and Communication. Marcel Dekker, New York.Google Scholar
  31. Mushinsky, H.R., andLotz, K.H. 1980. Chemoreceptive responses of two sympatric water snakes to extracts of commonly ingested prey species. Ontogenetic and ecological considerations.J. Chem. Ecol. 6:523–535.Google Scholar
  32. O'Farrell, P.H. 1975. High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 250:4007–4021.PubMedGoogle Scholar
  33. Reformato, L.S., Kirschenbaum, D.M., andHalpern, M. 1983. Preliminary characterization of response-eliciting components of earthworm extract.Pharmacol. Biochem. Behav. 18:247–254.PubMedGoogle Scholar
  34. Sheffield, L.P., Law, J.L., andBurghardt, G.M. 1968. On the nature of chemical food sign stimuli for newborn garter snakes.Commun. Behav. Biol. 2A:7–12.Google Scholar
  35. Singer, A.G., Macrides, F., Clancy, A.N., andAgosta, W.C. 1986. Purification and analysis of a proteinaceous aphrodisiac pheromone from hamster vaginal discharge.J. Biol. Chem. 261:13323–13326.PubMedGoogle Scholar
  36. Steward, J.W. 1971. The Snakes of Europe. David & Charles, Newton Abbot.Google Scholar
  37. Teather, S.M. 1991. The relative importance of visual and chemical cues for foraging in newborn blue-striped garter snakesThamnophis sirtalis similis.Behaviour 117:255–261.Google Scholar
  38. Wang, D., Chen, P., Jiang, X.C., andHalpern, M. 1988. Isolation from earthworms of a proteinaceous chemoattractant to garter snakes.Arch. Biochem. Biophys. 267:459–466.PubMedGoogle Scholar
  39. Wang, D., Jiang, X.C., Chen, P., Inouchi, J., andHalpern, M. 1993. Chemical and immunological analysis of prey-derived vomeronasal stimulants.Brain Behav. Evol. 41:246–254.PubMedGoogle Scholar
  40. Wright, A.H., andWright, A.A. 1970. Handbook of Snakes of the United States and Canada. Comstock Publishing Associates, Ithaca, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Ruddy Wattiez
    • 1
  • Christophe Remy
    • 1
  • Paul Falmagne
    • 1
  • Gerard Toubeau
    • 2
  1. 1.Department of Biological ChemistrySchool of SciencesMonsBelgium
  2. 2.Department of Histology, School of MedicineUniversity of Mons-HainautMonsBelgium

Personalised recommendations