Autoradiographische Untersuchungen über die Zellkinetik der enchondralen Ossifikation der Maus nach Oestrogen- und Testosteronverabreichung

  • Franklin Holzer
Article

Zusammenfassung

  1. 1.

    Zur Prüfung der Oestrogen- und Testosteroneinwirkung auf die enchondrale Ossifikation erhalten 25 g schwere, 5 Monate alte, männliche Mäuse täglich intraperitoneal je 2 mg Oestrogen bzw. Testosteron. Die Mäuse werden 7, 13, 20 und 27 Tage nach Versuchsbeginn getötet, nachdem ihnen zusätzlich 40 min vor dem Tode intraperitoneal eine Dosis von 25ΜC3H-Thymidin injiziert wurde.

     
  2. 2.

    Die Knochenneubildung an der proximalen Tibiametaphyse ist bei den Testosteronmäusen gegenüber den Kontrollen nicht gesteigert, sogar eher gehemmt. Die Oestrogenmäuse zeigen eine stark gesteigerte enchondrale, endostale und periostale Knochenneubildung. Der prozentuale Anteil des Knochengewebes zum Gesamtgewicht der Metaphyse beträgt bei den Kontrollmäusen 28,6%, bei den Testosteronmäusen 24,6% und bei den Oestrogenmäusen 39,6%.

     
  3. 3.

    Der3H-Index der Präosteoblasten der Testosteronmäuse liegt während der ganzen Versuchsdauer im Bereich der Norm (7%). Der3H-Index der Präosteoblasten steigt bei den Oestrogenmäusen innerhalb von 7 Tagen von 7 auf 16% an und stabilisiert sich im weiteren Versuchs-verlauf bei 33%. Nach den autoradiographischen Befunden besteht die Oestrogenwirkung sowohl in einer internen Anregung der Neubildung von Präosteoblasten als auch in einer Beschleunigung der Ausdifferenzierung der Präosteoblasten in Osteoblasten.

     

Summary

  1. 1.

    To examine the effects of sex hormones on endochondral ossification, 5–6 month old male „Swiss Mice“, each weighing approximately 25 grams, received daily 2 mg intraperitoneal doses of estrogen or testosterone. The mice were killed 7, 13, 20 and 27 days after the start of the experiment. In addition, 25ΜC3H-thymidine was administered intraperitoneally to each mouse 40 minutes before death.

     
  2. 2.

    There is no increased bone formation in the proximal tibial metaphysis of the testosterone mice compared with control mice. In fact, new bone formation in the testosterone mice appears to be inhibited. The estrogen mice exhibit an exceptional increase in endochondral, endostal and periostal new bone formation. A weight comparison of the component bone tissue to the total tibial metaphysis yields a percentile of 28,6% for the control mice, 24,6% for the mice treated with testosterone, and 39,6% for those treated with estrogen.

     
  3. 3.

    The3H-Index of the preosteoblasts remains uniformly constant at the normal value of 7% in all the mice treated with testosterone. Estrogen increases the3H-Index of the preosteoblasts from 7% to 16% after only 7 days of treatment, and then stabilizes at 33% for the duration of the experiment. According to these autoradiographic findings, estrogen apparently internally stimulates preosteoblastic formation, and also accelerates differentiation of preosteoblasts into osteoblasts.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amano, M., B. Messier, andC. P. Leblond: Specificity of labelled thymidine as a desoxyribonucleic acid precursor in radioautography. J. Histoohem.7, 153 (1958).Google Scholar
  2. Barker, D. J. P., andJ. N. Crossley: Effect of testosterone on estrogen induced bone formation in mice. Nature (Lond.)194, 1088 (1962).CrossRefGoogle Scholar
  3. Bloom, W., M. A. Bloom, andF. C. McLean: Calcification and ossification. Medullary bone changes in the reproductive cycle of female pigeons. Anat. Rec.81, 443 (1941).CrossRefGoogle Scholar
  4. Bourne, G. H.: The biochemistry and physiology of bone. New York: Academic Press Inc. 1956.Google Scholar
  5. Caldwell, R. A.: The effect of sex hormones in experimental osteoporosis in rats. Brit. J. exp. Path.43, 103 (1962).PubMedGoogle Scholar
  6. Clavert, J.: Action hypercalcémique et ostéogénétique de la folliculine chez le pigeon. C. R. Soc. Biol. (Paris)136, 507 (1942).Google Scholar
  7. Clavert, J.: Action ostéogénétique de la folliculine chez le pigeon. C. R. Soc. Biol. (Paris)136, 512 (1942).Google Scholar
  8. —, etJ. Benoit: Enrichissement du squelette en calcium chez le pigeon sous l'action du dipropionate d'oestradiol. C. R. Soc. Biol. (Paris)136, 509 (1942).Google Scholar
  9. Eger, W.: Allgemeine morphologische Physiologie und Pathologie des Knochen-gewebes unter Berücksichtigung calcipenischer Osteopathien. Internist3, 367 (1962).Google Scholar
  10. Ershoff, B. H., R. B. Alfrin-Slater, andS. Berwick: Osteoporosis dystrophic mice, protective effect of testosterone propionate and estradiol benzoate administration. Arch. Path. (Chic.)72, 599 (1961).Google Scholar
  11. Gardner, W. U.: Sexual dimorphism of the pelvis of the mouse, the effect of estrogenic hormones upon the pelvis. Amer. J. Anat.59, 459 (1936).CrossRefGoogle Scholar
  12. —: Modifications of bones of animals receiving sex hormone. Anat. Rec.76, (suppl. 2) 22 (1940).Google Scholar
  13. —: The influence of sex and sex hormones on the breaking strength of mice. Endocrinology32, 149 (1943).Google Scholar
  14. —, andC. Pfeiffer: Skeletal changes in mice receiving estrogens. Proc. Soc. exp. Biol. (K. Y.)37, 678 (1937).Google Scholar
  15. — —: Inhibition of estrogenic effect on the skeleton by testosterone injections. Proc. Soc. exp. Biol. (N. Y.)38, 599 (1938).Google Scholar
  16. — —: Influences of estrogens and androgens on the skeletal system. Physiol. Rev.23, 139 (1943).Google Scholar
  17. Howard, E.: Steroids and bone maturation in infant mice. Endocrinology70, 131 (1962).PubMedGoogle Scholar
  18. Hughes, W. L., V. P. Bond, G. Brecher, E. P. Cronkite, R. B. Painter, H. Quastler, andF. G. Sherman: Cellular proliferation in the mouse as revealed by autoradiography with tritiated thymidine. Proc. nat. Acad. Sci. (Wash.)44, 476 (1958).CrossRefGoogle Scholar
  19. Kember, N. F.: Cell division in endochrondral ossification. J. Bone Jt Surg.42-B, 824 (1960).Google Scholar
  20. Landauer, W., andB. Zondek: Observations on the structure of bone in estrogen treated cocks and drakes. Amer. J. Path.20, 179 (1944).Google Scholar
  21. Leblond, C. P., B. Messier, andB. Koprikowa: Thymidine as a tool for the investigation of the renewal of cell populations. Lab. Invest.8, 296 (1959).PubMedGoogle Scholar
  22. Lichtwitz, A., G. Thiéry, R. Parlier, etM. Delaville: Les hormones génitales et le cartilage de conjugaison. Sem. HÔp. Paris27, 247 (1951).PubMedGoogle Scholar
  23. Martin, E., etG. Majno: Cortisone et tissu osseux. Schweiz. med. Wschr.84, 757 (1954).PubMedGoogle Scholar
  24. Maurer, W., u. E.Koburg: Autoradiographische Untersuchungen mit H3-Thymidin über den zeitlichen Verlauf der DNS-Synthese bei den Epithelien des Darmes und bei anderen Zellarten der Maus. Verh. dtsch. Ges. Path. 45. Tgg. 108 (1961).Google Scholar
  25. McCullagh, E. P., andF. J. McGurl: The effects of testosterone propionate on epiphyseal closure, sodium and chloride balance, and on sperm counts. Endocrinology26, 377 (1940).Google Scholar
  26. Nobaok, C. R., J. C. Barnett, andH. S. Kupperman: The time of appearance of ossification centers in the rat as influenced by injections of thyroxin, thiouracil, estradiol and testosterone propionate. Anat. Rec.103, 49 (1949).CrossRefGoogle Scholar
  27. Owen, M.: Cell population kinetics of an osteogenic tissue. J. cell. Biol.19, 19 (1963).PubMedCrossRefGoogle Scholar
  28. Painter, R. B., andR. M. Drew: Studies on deoxynucleic acid metabolism in human cancer cell cultures (Hela). I. the temporal relationship of deoxyribo-nucleic acid synthesis to mitosis and turnover time. Lab. Invest.8, 278 (1959).PubMedGoogle Scholar
  29. Pilgrim, Ch., u.W. Maurer: Autoradiographische Bestimmung der DNS-Ver-doppelungszeit verschiedener Zellarten von Maus und Ratte bei Doppelmarkierung mit HP- und C14-Thymidin. Naturwissenschaften49, 544 (1962).CrossRefGoogle Scholar
  30. Putschar, W. G. J.: General pathology of the musculo-skeletal system. Handb. Allg. Path., Bd. III, 2. Teil, S. 363. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  31. Reiss, M., J. E. Fernandes, andY. M. L. Golla: The peripheral inhibitory influence of large doses of testosterone on epiphyseal cartilagenous growth. Endocrinology38, 65 (1946).Google Scholar
  32. Rohr, H. P.: Autoradiographische Untersuchungen über den Wirkungsmechanismus des Cortisons auf das enchondrale Knochenlängenwachstum der Ratte. Z. ges. exp. Med.138, 15 (1964).Google Scholar
  33. —: Autoradiographische Untersuchungen über die Zellkinetik der enchondralen Ossiflkation der Ratte nach Parathormonverabreichung. Z. ges. exp. Med.138, 461 (1964).PubMedCrossRefGoogle Scholar
  34. Schultze, B., andW. Oehlert: Autoradiographic investigations of incorporation of H-3-thymidine into different cells of different tissues of the rat and the mouse. Science181, 737 (1960).CrossRefGoogle Scholar
  35. Silberberg, M., andR. Silberberg: Difference in response of skeletal tissues in mice of various ages. Anat. Rec.80, 347 (1941).CrossRefGoogle Scholar
  36. — —: Age changes of bones and joints in various strains of mice. Amer. J. Anat.68, 69 (1941).CrossRefGoogle Scholar
  37. — —: Further investigations on the effects of estrogens on skeletal tissues. Amer. J. Anat.69, 295 (1941).CrossRefGoogle Scholar
  38. — —: Response of cartilage and bone of growing mice to testosterone propionate. Arch. Path. (Chic.)32, 85 (1941).Google Scholar
  39. — —: Further investigations on the effect of the male sex hormone on endochondral ossification. Anat. Rec.95, 97 (1946).CrossRefGoogle Scholar
  40. — —: Epiphyseal growth and development in mice following administration of a protein anabolic steroid. Anat. Rec.139, 51 (1961).PubMedCrossRefGoogle Scholar
  41. — —: The role of sex hormones in the pathogenesis of osteoarthrosis of mice. Lab. Invest.12, 285 (1963).PubMedGoogle Scholar
  42. Simmons, D. J.: Cellular changes in the bones of mice as studied with tritiated thymidine and the effects of estrogen. Clin. Orthop. Rel. Res.26, 176 (1963).Google Scholar
  43. Simpson, M. E., E. A. Kibrick, H. Becks, andH. M. Evans: The effect of crystalline estrin implants on the proximal tibia and costochondral junction of young female rats. Endocrinology30, 286 (1942).Google Scholar
  44. Sutko, C. J.: The effects of subcutaneous injection of estrogen upon the skeleton in immature mice. Proc. Soc. exp. Biol. (N. Y.)44, 151 (1940).Google Scholar
  45. Suzuki, H. K.: Inhibition of estradiol induced endosteal bone formation after intrafemoral implantation of testosterone propionate into mice. J. Bone Jt Surg.40-A, 435 (1958).Google Scholar
  46. Tonna, E. A.: The cellular complement of the skeletal system studied autoradio-graphically with tritiated thymidine during growth and aging. J. Cytol.9, 813 (1961).Google Scholar
  47. Urist, M. R., A. M. Budy, andF. C. McLean: Endosteal bone formation in estrogen treated mice. J. Bone Jt Surg.32-A, 143 (1950).Google Scholar
  48. Wentworth, J. H., P. K. Smith, andW. U. Gardner: The composition of bones of mice receiving estrogen and androgens. Endocrinology26, 61 (1940).CrossRefGoogle Scholar
  49. Young, R. W.: Cell proliferation and specialization during enchrondral osteogenesis in young rats. J. Cellbiol.14, 357 (1962).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Franklin Holzer
    • 1
  1. 1.Pathologischen Institut der Universität ZürichSchweiz

Personalised recommendations