Skip to main content
Log in

Quantization of helicity on a compact spacetime

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Dirac operator arises naturally on\(\mathbb{S}^1 \times \mathbb{S}^3 \) from the connection on the Lie group U(1)×SU(2) and maps spacetime rays into rays in the Lie algebra. We construct both simple harmonic and pulse solutions to the neutrino equations on\(\mathbb{S}^1 \times \mathbb{S}^3 \), classified by helicity and holonomy, using this map. Helicity is interpreted as the internal part of the Noether charge that arises from translation invariance; it is topologically quantized in integral multiples of a constant g that converts a Lie-algebra phase shift into an action. The fundamental unit of helicity is associated with a full twist in u(1)×su(2) phase per global lightlike cycle. If we pass to the projective space ℝP1xℝP3, we get half-integral helicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. van der Waerden,Group Theory and Quantum Mechanics (Springer, New York, 1974).

    Google Scholar 

  2. J. J. Sakurai,Advanced Quantum Mechanics (Benjamin/Cummings, Menlo Park, California, 1973).

    Google Scholar 

  3. E. Wigner, “On unitary representations of the inhomogeneous Lorentz group,”Ann. Math. 40(1), 149–204 (1939).

    Google Scholar 

  4. V. Bargmann and E. P. Wigner, “Group theoretical discussion of relativistic wave equations,”Proc. Natl. Acad. Sci. USA 34, 211–223 (1948).

    Google Scholar 

  5. R. W. Bass and L. Witten, “Remarks on cosmological models,”Rev. Mod. Phys. 29, 452–453 (1957).

    Google Scholar 

  6. D. R. Brill and J. A. Wheeler, “Interaction of neutrinos and gravitational fields,”Rev. Mod. Phys. 29(3), 465–479 (1957).

    Google Scholar 

  7. L. H. Ryder,Quantum Field Theory (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  8. N. Hitchen, “Harmonic spinors,”Adv. Math. 14, 1–55 (1974).

    Google Scholar 

  9. W. L. Bade and H. Jehle, “An introduction to spinors,”Rev. Mod. Phys. 25(3), 714–728 (1953).

    Google Scholar 

  10. A. O. Barut and I. H. Duru, “Exact solutions of the Dirac equation in spatially flat Robertson-Walker space-times,”Phys. Rev. D 36(12), 3705–3711 (1987).

    Google Scholar 

  11. H. S. M. Coxeter,Non-Euclidean Geometry (University of Toronto Press, Toronto, Canada, 1942).

    Google Scholar 

  12. L. Infeld and B. L. van der Waerden,Sitzber. Preuss. Akad. Wiss., Phys.-Math. Kl. 380 (1933).

  13. A. O. Barut,Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1980).

    Google Scholar 

  14. R. Penrose and W. Rindler,Spinors and Space-Time, Volume 1: Two-Spinor Calculus and Relativistic Fields (Cambridge Monographs on Mathematical Physics) (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  15. T. Eguchi, P. B. Gilkey, and A. J. Hanson, “Gravitation, gauge theories and differential geometry,”Phys. Rep. 66(6), 1980.

  16. N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  17. R. Abraham and J. E. Marsden,Foundations of Mechanics, 2nd edn. (Benjamin/Cummings, Reading, Massachusetts, 1978).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields, 4th revised English edn. (Course of Theoretical Physics, Vol. 2) (Pergamon, New York, 1975).

    Google Scholar 

  19. R. Penrose and W. Rindler,Spinors and Space-Time, Volume 2: Spinor and Twistor Methods in Space-Time Geometry (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  20. D. H. Sattinger and O. L. Weaver,Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics (Applied Mathematical Sciences61) (Springer, New York, 1986).

    Google Scholar 

  21. C. Chevalley,Theory of Lie Groups (Princeton University Press, Princeton, 1946).

    Google Scholar 

  22. J. W. Milnor,Topology from the Differentiable Viewpoint (University of Virginia Press, Charlottesville, North Carolina, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, M.S. Quantization of helicity on a compact spacetime. Found Phys 25, 995–1028 (1995). https://doi.org/10.1007/BF02059523

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02059523

Keywords

Navigation