Foundations of Physics

, Volume 26, Issue 1, pp 127–137 | Cite as

Information, physics, and computation

  • Subhash C. Kak


This paper presents several observations on the connections between information, physics, and computation. In particular, the computing power of quantum computers is examined. Quantum theory is characterized by superimposed states and nonlocal interactions. It is argued that recently studied quantum computers, which are based on local interactions, cannot simulate quantum physics.


Quantum Theory Computing Power Quantum Computer Local Interaction Nonlocal Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Benioff, “Quantum mechanical Hamiltonian models of Turing machines,”J. Stat. Phys. 29, 515–546 (1982).Google Scholar
  2. 2.
    C. H. Bennett, “The thermodynamics of computation—a review,”Int. J. Theor. Phys. 21, 905–940 (1982).Google Scholar
  3. 3.
    D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,”Proc. R. Soc. London A 400, 97–117 (1985).Google Scholar
  4. 4.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965).Google Scholar
  5. 5.
    R. P. Feynman, “Simulating physics with computers,”Int. J. Theor. Phys. 21, 467–488 (1982).Google Scholar
  6. 6.
    R. P. Feynman, “Quantum mechanical computers,”Found. Phys. 16, 507–531 (1986).Google Scholar
  7. 7.
    E. Fredkin and T. Toffoli, “Conservative logic,”Int. J. Theor. Phys. 21, 219–253 (1982).Google Scholar
  8. 8.
    M. Jibu, S. Hagan, S. Hameroff, K. H. Pribram, and K. Yasue, “Quantum optical coherence in cytoskeletal microtubules: implications for brain function,”BioSystems 32, 195–209 (1994).Google Scholar
  9. 9.
    S. C. Kak, “On quantum numbers and uncertainty,”Nuovo Cimento 33B, 530–534 (1976).Google Scholar
  10. 10.
    S. C. Kak, “On information associated with an object,”Proc. Indian Nat. Sci. Acad. 50, 386–396 (1984).Google Scholar
  11. 11.
    S. C. Kak, “On quantum neural computing,”Inform. Sci. 83, 143–160 (1995).Google Scholar
  12. 12.
    S. C. Kak, “Quantum neural computing,”Adv. Imaging Electron Phys. 94, 259–313 (1995).Google Scholar
  13. 13.
    R. Landauer, “Irreversibility and heat generation in the computing process,”IBM J. Res. Dev. 5, 183–191 (1961).Google Scholar
  14. 14.
    R. Landauer, “Computation and physics: Wheeler's meaning circuit?”Found. Phys. 16, 551–564 (1986).Google Scholar
  15. 15.
    R. Landauer, “Information is physical,”Phys. Today 44(5), 23–29 (1991).Google Scholar
  16. 16.
    R. Landauer, “Is quantum mechanically coherent computation useful?” inProceedings, Drexel-4 Symposium on Quantum Nonintegrability—Quantum-Classical Correspondence, D. H. Feng and B-L. Hu, eds. (International Press, 1995).Google Scholar
  17. 17.
    S. Lloyd, “A potentially realizable quantum computer,”Science 261, 1569–1571 (1993).Google Scholar
  18. 18.
    H.-O. Peitgen, H. Jürgens, and D. Saupe,Fractals for the Classroom: Complex Systems and Mandelbrot Set (Springer, New York, 1992).Google Scholar
  19. 19.
    P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” inProceedings, 35th Annual Symposium on Foundations of Computer Science (IEEE Press, 1994).Google Scholar
  20. 20.
    J. A. Wheeler, “The computer and the universe,”Int. J. Theor. Phys. 21, 557–572 (1982).Google Scholar
  21. 21.
    E. P. Wigner, inThe Scientist Speculates, I. J. Good, ed. (Basic Books, New York, 1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Subhash C. Kak
    • 1
  1. 1.Department of Electrical and Computer EngineeringLouisiana State UniversityBaton Rouge

Personalised recommendations