Advertisement

Calcified Tissue Research

, Volume 3, Issue 1, pp 284–292 | Cite as

A structural basis for the transphosphorylation of nucleotides with hydroxyapatite

  • D. R. Taves
  • R. C. Reedy
Original Papers

Abstract

The basis for transphosphorylation between nucleotides and hydroxyapatite (HA) has been explored. Using a recently-proposed model for the surface of HA and the structure of 2- and 3-membered polyphosphates, a reasonable atomic explanation can be shown for this reaction. Transphosphorylation has been found to result in a pyrophosphate on HA which is distinctive from pyrophosphate absorbed onto HA from solution. The models suggest that this distinction is due to a different orientation of the pyrophosphate on the surface of the HA depending on the origin of the pyrophosphate.

Key words

Hydroxyapatite Pyrophosphate Nucleotides Adenosine triphosphate Transphosphorylation 

Résumé

La base de la transphosphorilation entre les nucléotides et l'hydroxyapatite (HA) est explorée. Utilisant un recent modèle de la surface de HA et de la structure de polyphosphates de 2 et 3 parties, une raisonnable explication atomique peut être montrée pour cette réaction. La transphosphorilation a produit un pyrophosphate sur HA qui est différent du pyrophosphate absorbé sur HA de la solution. Les modèles suggèrent que la distinction est dûe à une orientation différente du pyrophosphate sur la surface de HA dépendant de l'origine du pyrophosphate.

Zusammenfassung

Es wurde die Grundlage für die Transphosphorylierung zwischen Nukleotiden und Hydroxy-Apatit (HA) untersucht. Eine plausible atomare Darstellung dieser Reaktion ist möglich, wenn man kürzlich vorgeschlagene Modelle der Oberfläche von HA und der Struktur von zwei- und dreigliedrigen Polyphosphaten benutzt.

Man findet dann, daß Transphosphorylierung zu einem Pyrophosphat des HA führt, welches von dem Pyrophosphat, welches HA aus der Lösung absorbiert, unterschieden werden kann. Auf Grund der Modelle kann man annehmen, daß dieser Unterschied auf einer unterschiedlichen Orientierung des Pyrophosphats auf der Oberfläche des HA beruht, welche wiederum von der Herkunft des Pyrophosphats abhängt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, W. E.: Octacalcium phosphate and hydroxyapatite. Nature (Lond.)196, 1048–1050 (1962).Google Scholar
  2. 2.
    —,J. P. Smith, J. R. Lehr, andA. W. Frazier: Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature (Lond.)196, 1050–1054 (1962).Google Scholar
  3. 3.
    Burley, R. W.: Transphosphorylation of adenosine di- and tri-phosphates in the presence of calcium phosphate precipitates. Nature (Lond.)208, 683–684 (1965).Google Scholar
  4. 4.
    Corbridge, D. E. C.: The crystal structure of sodium triphosphate Na5P3O10, phase I. Acta cryst.13, 263–269 (1960).Google Scholar
  5. 5.
    Fleisch, H., R. G. G. Russell, andF. Straumann: Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature (Lond.)212, 901–903 (1966).Google Scholar
  6. 6.
    Krane, S. M., andM. J. Glimcher: Transphosphorylation from nucleoside di- and triphosphates by apatite crystals. J. biol. Chem.237, 2991–2998 (1962).PubMedGoogle Scholar
  7. 7.
    Miller, D. L., andF. H. Westheimer: Interaction of γ-phenylpropyl triphosphate with cations. J. Amer. chem. Soc.88, 1514–1517 (1966).Google Scholar
  8. 8.
    Neuman, W. F., andM. W. Neuman: On, the possible role of crystals in the origins of life. AEC Research and Development Report UR 656 (1964).Google Scholar
  9. 9.
    Posner, A. S., A. Perloff, andA. F. Diorio: Refinement of the hydroxyapatite structure. Acta cryst.11, 308–309 (1958).Google Scholar
  10. 10.
    Taves, D. R.: Similarity of octacalcium phosphate and hydroxyapatite structures. Nature (Lond.)200, 1312–1313 (1963).Google Scholar
  11. 11.
    —: Mechanisms of calcification. Clin. Orthop.42, 207–220 (1965).PubMedGoogle Scholar
  12. 12.
    Termine, J. D., andA. S. Posner: Amorphous/crystalline interrelationships in bone mineral. Calc. Tiss. Res.1, 8–23 (1967).Google Scholar
  13. 13.
    Tetas, M., andJ. M. Lowenstein: The effect of bivalent metal ions on the hydrolysis of adenosine di- and triphosphate. Biochemistry2, 350–357 (1963).PubMedGoogle Scholar
  14. 14.
    Webb, N. C.: The crystal structure of β Ca2P2O7. Acta cryst.21, 942–948 (1966).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • D. R. Taves
    • 1
  • R. C. Reedy
    • 1
  1. 1.Department of Radiation Biology and BiophysicsUniversity of Rochester School of Medicine and DentistryRochester

Personalised recommendations