Advertisement

Calcified Tissue Research

, Volume 3, Issue 1, pp 17–29 | Cite as

Rapid increase in fraction of cardiac output to bone in experimental calcium deficiency

  • S. David Rockoff
  • Anthony Bravo
  • Harold Kaye
  • Richard P. Spencer
Original Papers

Abstract

The fractional redistribution of cardiac output to bone in dietary calcium deficiency was studied in the immature rat, utilizing the86Rb method of Sapirstein. The results of the study indicated that there was a rapid and significant increase in the fraction of cardiac output to the femurs of the calcium-deficient rats relative to the control population. The increase in cardiac output fraction to bone occurred during the same general time period in which significant changes in the density, dry weight and ash content were detected. The increased fraction of the cardiac output to the femur in the calcium-deficient rats returned to normal after nine days, in spite of continuation of the calcium-deficient diet.

Key words

Bone blood flow Calcium deficiency Metabolic bone disease 

Résumé

La fraction du débit cardiac destinée á l'os a été étudiée chez des rats jeunes soumis à un régime pauvre en calcium, suivant la méthode86Rb de Sapirstein. Les résultats d'une telle étude montrent bien une augmentation rapide et consistante du débit sanguin destiné aux deux fémurs de ces rats vis à vis des controles. L'hyperhémie osseuse est mise en évidence en même temps que l'on note des modifications importantes de la densité, du pois sec et du contenu en cendre. Le retour à la normalité se fait neuf jours après et ceci malgré la continuation de la diete pauvre, en calcium.

Zusammenfassung

Der dem Knochen zufließende Anteil des Herzminutenvolumens bei calciumarmer Ernährung wurde bei der unreifen Ratte mittels der86Rb-Methode vonSapierstein untersucht. Die Resultate dieser Studie zeigten, daß bei calciumuntererährten Ratten im Vergleich zu der Kontrollpopulation eine schnelle und signifikante Zunahme des Minutenvolumenanteils, der dem Oberschenkelknochen zugeführt wird, auftritt. Diese Zunahme findet in derselben Zeitspanne statt, in der auch deutlich sichtbare Veränderungen der Dichte, des Trockengewichtes und des Aschengehaltes festgestellt werden konnten. Der erhöhte Anteil des zum Femur ausgestoßenen Minutenvolumens normalisierte sich nach 9 Tagen, obwohl die calciumarme Diät beibehalten wurde.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blair, H. C.: The alternation of blood supply as a cause for normal calcification of bone. Surg. Gynec. Obstet.67, 413–423 (1938).Google Scholar
  2. Copp, D. H., andA. P. Suiker: Study of calcium kinetics in calcium- and phosphorus-deficient rats with the aid of radiocalcium. In: Radio-isotopes and bone (eds.F. C. McLean, P. Lacroix andA. M. Budy), p. 1. Philadelphia: F. A. Davis Co. 1962.Google Scholar
  3. Dixon, W. J., andF. J. Massey, Jr.: Introduction to statistical analysis, p. 115. New York: McGraw-Hill Book Co. 1957.Google Scholar
  4. Geiser, M., andJ. Trueta: Muscle action, bone rarefaction and bone formation. J. Bone Jt Surg.40B, 282–311 (1958).Google Scholar
  5. Goldenberg, H., andA. Fernandez: Simplified method for the estimation of inorganic phosphorus in body fluids. Clin. Chem.12, 871–882 (1966).PubMedGoogle Scholar
  6. Greig, D. M.: Clinical observations on the surgical pathology of bone, p. 6. London: Oliver & Boyd 1931.Google Scholar
  7. Harrison, M., andR. Fraser: Bone structure and metabolism in calcium-deficient rats. J. Endocr.21, 197–205 (1960).PubMedGoogle Scholar
  8. ——: The parathyroid glands and calcium-deficiency in the rat. J. Endocr.21, 207–211 (1960).PubMedGoogle Scholar
  9. Hulth, A., andS. Olerud: Disuse of extremities. I. An arteriographic study in the rabbit. Acta. chir. scand.120, 220–226 (1960).PubMedGoogle Scholar
  10. Imig, C. J., B. F. Randall, andH. M. Hines: Effect of immobilization on muscular atrophy and blood flow. Arch. phys. Med.34, 296–299 (1953).PubMedGoogle Scholar
  11. Jaffee, H. L.: The resorption of bone. A consideration of the underlying processes particularly in pathologic conditions. Arch. Surg.20, 355–385 (1930).Google Scholar
  12. Johnson, L. C.: Morphologic analysis in pathology: the kinetics of disease and general biology of bone. In: Bone biodynamics (ed.H. M. Frost), p. 543. London: J. A. Churchill Ltd 1964.Google Scholar
  13. Leriche, R., andA. Policard: The normal and pathological physiology of bone; its problems. English Translation byS. Moore andJ. A. Key. St. Louis: C. V. Mosby 1928.Google Scholar
  14. Lorimier, A. A. de, W. L. Minear andH. B. Boyd: Reflex hyperemic deossifications regional to joints of the extremities. Radiology46, 227–236 (1946).Google Scholar
  15. Miller, D. S., andG. de Takats: Post-traumatic dystrophy of the extremities. Sudek's atrophy. Surg. Gynec. Obstet.75, 558–582 (1942).Google Scholar
  16. Ray, R. D., R. Aouad, andM. Kawabata: Experimental study of peripheral circulation and bone growth. Clin. Orthop.52, 221–232 (1967).PubMedGoogle Scholar
  17. Sapirstein, L. A.: Regional blood flow by fractional distribution of indicators. Amer. J. Physiol.193, 161–168 (1958).PubMedGoogle Scholar
  18. —: The indicator fractionation technique for the study of regional blood flow. Gastroenterology52, 365–371 (1967).PubMedGoogle Scholar
  19. —, andM. J. Mandel: Blood flow in the aortic wall. Circulat. Res.7, 545–550 (1959).PubMedGoogle Scholar
  20. —, andL. E. Moses: Cerebral and cephalic blood flow in man: Basic considerations of the indicator-fractionation. In: Dynamic clinical studies with radioisotopes (eds.R. M. Kniseley, W. N. Tauxe andE. B. Anderson), p. 135. Oak Ridge, Tenn: U.S. Atomic Energy Commission 1964.Google Scholar
  21. —,E. H. Sapirstein, andA. Bredemeyer: Effect of hemorrhage on the cardiac output and its distribution in the rat. Circulat. Res.8, 135–147 (1960).PubMedGoogle Scholar
  22. Semb, H.: Experimental disuse osteoporosis. I. Acid-base status in intramedullary blood from immobilized rabbit tibial bones. Acta Soc. Med. upsalien.71, 83–95 (1966a).Google Scholar
  23. — Experimental disuse osteoporosis. II. Oxygen saturation and oxygen tension in intramedullary blood from immobilized rabbit tibial bones. Acta Soc. Med. upsalien.71, 96–107 (1966b).Google Scholar
  24. —: Plasma clearance of Sr85 by bone. An attempt to study the rate of blood flow through normal and immobilized bone in dogs. Acta. Soc. Med. upsalien.71, 227–236 (1966c).Google Scholar
  25. —: Effect of immobilization on bone blood flow estimated by initial uptake of radioactive strontium. Surg. Gynec. Obstet.127, 275–281 (1968).PubMedGoogle Scholar
  26. Trueta, J.: The dynamics of bone circulation. In: Bone biodynamics (ed.H. M. Frost), p. 245. London: J. A. Churchill Ltd. 1964.Google Scholar
  27. Valderrama, J. A. F. de andK. Little: Mechanisms involved in the osteoporotic process. J. Bone Jt Surg.47B, 193 (1965).Google Scholar
  28. Zettner, A., andD. Seligson: Application of atomic absorption spectrophotometry in the determination of calcium in serum. Clin. Chem.10, 869–890 (1964).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • S. David Rockoff
    • 1
  • Anthony Bravo
  • Harold Kaye
  • Richard P. Spencer
  1. 1.Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. Louis

Personalised recommendations