Advertisement

Foundations of Physics

, Volume 26, Issue 5, pp 691–699 | Cite as

Interacting electrons in disordered potentials: The inverse compressibility

  • Richard Berkovits
Article
  • 58 Downloads

Abstract

The inverse compressibility, i.e., the change in the chemical potential as the number of particles in the sample is changed, is studied for a small quantum dot. It is found that the inverse compressibility behaves differently for different values of disorder and electron-electron interactions. For weak interactions or strong disorder one may understand this behavior in the framework of a random matrix theory.

Keywords

Compressibility Weak Interaction Matrix Theory Random Matrix Random Matrix Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Jammmer, Ph.D. thesis, Hebrew University, Jerusalem.Google Scholar
  2. 2.
    For more details, see C. Weisbuch and B. Vinter,Quantum Semiconductor Structures (Academic, Boston, 1991).Google Scholar
  3. 3.
    L. P. Gorkov and G. M. Eliashberg,Zh. Eksp. Teor. Fiz. 48, 1407 (1965) [Sov. Phys. JETP 21, 940 (1965)].Google Scholar
  4. 4.
    B. L. Altshuler and B. I. Shklovskii,Zh. Eksp. Teor. Fiz. 91, 220 (1986) [Sov. Phys. JETP 64, 127 (1986)].Google Scholar
  5. 5.
    U. Sivan and Y. Imry,Phys. Rev. B 35, 6074 (1987).Google Scholar
  6. 6.
    S. N. Evangelou and E. N. Economou,Phys. Rev. Lett. 68, 361 (1992).Google Scholar
  7. 7.
    F. M. Izrailev,Phys. Rep. 129, 299 (1990).Google Scholar
  8. 8.
    B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and H. B. Shore,Phys. Rev. B. 47, 11487 (1993).Google Scholar
  9. 9.
    R. Harris and Z. Yan,J. Phys. Condens. Matter 5, L493 (1993).Google Scholar
  10. 10.
    E. Hofstetter and M. Schreiber,Phys. Rev. B 48, 16979 (1993).Google Scholar
  11. 11.
    V. E. Kravtsov, I. V. Lerner, B. L. Altshuler, and A. G. Aronov,Phys. Rev. Lett. 72 (1994).Google Scholar
  12. 12.
    S. N. Evangelou,Phys. Rev. B 49, 16805 (1994).Google Scholar
  13. 13.
    E. Hofstetter and M. Schreiber,Phys. Rev. Lett. 73, 3137 (1994).Google Scholar
  14. 14.
    E. P. Wigner,Ann. Math. 53, 36 (1951);62, 548 (1955);65, 203 (1957);67, 325 (1958).Google Scholar
  15. 15.
    F. J. Dyson,J. Math. Phys. 3, 140 (1962);3, 1157 (1962);3, 166 (1962).Google Scholar
  16. 16.
    M. L. Mehta,Random Matrices (Academic Press, San Diego, 1991).Google Scholar
  17. 17.
    R. Berkovits,Europhys. Lett. 25, 681 (1994).Google Scholar
  18. 18.
    R. Berkovits and Y. AvishaiJ. Phys. Condens Matter 8, 389 (1996).Google Scholar
  19. 19.
    U. Sivan, F. P. Milliken, K. Millkove, S. Rishton, Y. Lee, J. M. Hong, V. Boegli, D. Kern, and M. DeFranza,Europhys. Lett. 25, 605 (1994).Google Scholar
  20. 20.
    U. Sivan, private communication.Google Scholar
  21. 21.
    M. Field, C. G. Smith, and M. Pepper, private communication.Google Scholar
  22. 22.
    M. A. Kastner,Phys. Today 46, 24 (1993); R. Berkovits, M. Abraham, and Y. Avishai,J. Phys. Condens. Matter 5, L175 (1993).Google Scholar
  23. 23.
    R. Berkovits and B. L. Altshuler, preprint.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Richard Berkovits
    • 1
  1. 1.The Jack and Pearl Resnick Institute of Advanced Technology, Department of PhysicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations