Hyperfine Interactions

, Volume 23, Issue 2, pp 221–229 | Cite as

TDPAC investigation on thermally related HfF4.3H2O and HfO2

  • M. C. Caracoche
  • J. A. Martínez
  • P. C. Rivas
  • A. R. López García


The hyperfine quadrupole interaction of HfF4.3H2O at Hf sites is investigated from 14 to 820 K. No transitions have been found. After the complete dehydration of this compound at 393 K, chemical reactions take place which give rise to hafnium oxifluorides and metastable forms of hafnium oxide. Heating treatments at increasing temperatures make HfO2 turn into its monoclinic phase.


Oxide Thin Film Heating Treatment Dehydration Hafnium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.A. Martínez, M.C. Caracoche, A.M. Rodríguez, P.C. Rivas and A.R. López García, Chem. Phys. Lett. 102(1983)277.Google Scholar
  2. [2]
    D. Hall, C.E.F. Rickard and T.N. Waters, J. Inorg. Nucl. Chem. 33(1971)2395.Google Scholar
  3. [3]
    R.W.G. Wyckoff,Crystal Structures, Vol. 2 (Wiley, New York, 1965) p. 129.Google Scholar
  4. [4]
    Alfa Products, Ventron Division, Thiokol Corporation, 152 Andover Street, Danvers, MA 01923, USA.Google Scholar
  5. [5]
    J.A. Martinez, A.M. Rodriguez, M.C. Caracoche, R.C. Mercader and A.R. López García, Hyp. Int. 11(1981)261.Google Scholar
  6. [6]
    I.A. El-Shanshoury, V.A. Rudenko and I.A. Ibrahim, J. Amer. Ceram. Soc. 53(1969)264.Google Scholar
  7. [7]
    C.E.F. Rickard and T.N. Waters, J. Inorg. Nucl. Chem. 26(1964)925.Google Scholar
  8. [8]
    S. Koički, M. Marasijević and B. Cekić, Hyp. Int. 14(1983)105.Google Scholar
  9. [9]
    L. Thomé, H. Bernas, P. Heubes, M. Deicher and E. Recknagel, Nucl. Instr. and Meth. 199 (1982)431.Google Scholar
  10. [10]
    A.G. Boganov, V.S. Rudenko and L.P. Makarov, Dokl. Akad. Nauk. SSSR 160(1965)1065.Google Scholar
  11. [11]
    L.N. Komissarova, Yu.P. Simanov and Z.A. Vladimirova, Russian J. Inorg. Chem. 5(1960) 687.Google Scholar
  12. [12]
    K.S. Mazdiyasni, C.T. Lynch and J.S. Smith, J. Amer. Ceram. Soc. 49(1966)286.Google Scholar
  13. [13]
    Fluka A.G., Chemische Fabrik, CH-9470 Buchs, Switzerland.Google Scholar
  14. [14]
    P.R. Gardner and W.V. Prestwich, Can. J. Phys. 48(1970)1430;Google Scholar
  15. [14a]
    H. Barfuss, G. Böhnlein, H. Hohenestein, W. Kreische, H. Niedrig, H. Appel, R. Heidinger, J. Raudies, G. Then and W.G. Thies, Z. Phys. B47(1982)99.Google Scholar
  16. [15]
    B.E. Gerdau, J. Wolf, H. Winkler and J. Braunsfurth, Proc. Roy. Soc. A311(1969)197;Google Scholar
  17. [15a]
    Y. Yeshurun and B. Arad, J. Phys. C7(1974)430.Google Scholar
  18. [16]
    M. Salomon, L. Boström, T. Lindquist, M. Pérez and M. Zwansiger, Ark. Fys. 27(1965)97.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1985

Authors and Affiliations

  • M. C. Caracoche
    • 1
    • 2
  • J. A. Martínez
    • 1
    • 2
  • P. C. Rivas
    • 1
    • 3
  • A. R. López García
    • 1
    • 3
  1. 1.Departamento de Física, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.CICPBAArgentina
  3. 3.CONICETArgentina

Personalised recommendations