Skip to main content
Log in

Basal lamina-associated heparan sulphate proteoglycan in the rat PNS: Characterization and localization using monoclonal antibodies

  • Published:
Journal of Neurocytology

Summary

Cultured rat Schwann cells produce a basal lamina (BL)-associated heparan sulphate proteoglycan (HSPG). The HSPG has an apparent molecular weight of >450 kD, is sensitive to both heparinase and heparitinase and contains a core protein of ∼400kD. Two independently derived monoclonal antibodies, B3 and C17, recognize this HSPG. Using B3 and C17, we found that this HSPG, or immunologically related material, is present in BLs throughout the body and in a small number of connective tissue sites without a formed BL. In the PNS it is present in BLs of Schwann cell-axon units, in synaptic and extrasynaptic portions of muscle fibre BL, and in the BLs of satellite cells that ensheath neurons in sympathetic and sensory ganglia. This HSPG is not detectable in the neuropil of the brain and spinal cord. Neurons, Schwann cells and fibroblasts cultured alone do not assemble a BL or accumulate immunocytochemically detectable amounts of this HSPG, but it is present in BLs assembled in myotube and in Schwann cell-neuron cultures. Thus, this HSPG is a component of most, if not all, BLs in the PNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. J. &Fambrough, D. M. (1983) Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers.Journal of Cell Biology 97, 1396–411.

    PubMed  Google Scholar 

  • Aquino, D. A., Margolis, R. U. &Margolis, R. K. (1984) Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve.Journal of Cell Biology 99, 1117–29.

    PubMed  Google Scholar 

  • Bakerjee, S. D., Cohn, R. H. &Bernfield, M. R. (1977) Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology.Journal of Cell Biology 73, 445–63.

    PubMed  Google Scholar 

  • Bernfield, M. R. &Banerjee, S. D. (1982) The turnover of basal lamina glycosaminoglycan correlates with epithelial morphogenesis.Developmental Biology 90, 291–305.

    PubMed  Google Scholar 

  • Brandan, E. &Inestrosa, N. C. (1984) Binding of the asymmetric forms of acetylcholinesterase to heparin.Biochemical Journal 221, 415–22.

    PubMed  Google Scholar 

  • Bunge, R. P. &Bunge, M. B. (1983) Interrelationship between Schwann cell function and extracellular matrix production.Trends in Neuroscience 6, 499–505.

    Google Scholar 

  • Bunge, M. B., Williams, A. K. &Wood, P. M. (1982) Neuron-Schwann cell interaction in basal lamina formation.Developmental Biology 92, 449–60.

    PubMed  Google Scholar 

  • Bunge, M. B., Williams, A. K., Wood, P. M., Uitto, J. &Jeffrey, J. J. (1980) Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation.Journal of Cell Biology 84, 184–202.

    PubMed  Google Scholar 

  • Carey, D. J., Eldridge, C. F., Cornbrooks, C. J., Timpl, R. &Bunge, R. P. (1983) Biosynthesis of type IV collagen by cultured rat Schwann cells.Journal of Cell Biology 97, 473–9.

    PubMed  Google Scholar 

  • Carlson, S. S. &Kelly, R. B. (1983) A highly antigenic proteoglycan-like component of cholinergic synaptic vesicles.Journal of Biological Chemistry 258, 11082–91.

    PubMed  Google Scholar 

  • Chiu, A. Y. &Sanes, J. R. (1984) Differentiation of basal lamina in synaptic and extrasynaptic portions of embryonic rat muscle.Developmental Biology 103, 456–67.

    PubMed  Google Scholar 

  • Corkbrooks, C. J., Carey, D. J., McDonald, J. A., Timpl, R. &Bunge, R. P. (1983)In vivo andin vitro observations on laminin production by Schwann cells.Proceedings of the National Academy of Sciences, USA 80, 3850–4.

    Google Scholar 

  • Fujiwara, S., Wiedemann, H., Timpl, R., Lutsig, A. &Engel, J. (1984) Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane.European Journal of Biochemistry 143, 145–57.

    PubMed  Google Scholar 

  • Galfre, G., Howe, S. C., Milstein, C., Butcher, G. W. &Howard, J. C. (1977) Antibodies to major histocompatibility antigens produced by hybrid cell lines.Nature 266, 550–2.

    PubMed  Google Scholar 

  • Hassell, J. R., Leyshon, W. C., Ledbetter, S. R., Tyree, B., Suzuki, S., Kato, M., Kimata, K. &Kleinman, H. K. (1985) Isolation of two forms of basement membrane proteoglycans.Journal of Biological Chemistry 260, 8098–105.

    PubMed  Google Scholar 

  • Hassell, J. R., Robey, P. G., Barrach, H. J., Wilczek, J., Rennard, S. I. &Martin, G. R. (1980) Isolation of a heparan sulfate-containing proteoglycan from basement membrane.Proceedings of the National Academy of Sciences, USA 77, 4494–8.

    Google Scholar 

  • Hay, E. D. (ed.) (1981)Cell Biology of Extracellular Matrix. New York: Plenum Press.

    Google Scholar 

  • Hogan, B. L. M., Taylor, A. &Cooper, A. R. (1982) Murine parietal endoderm cells synthesize heparan sulphate and 170K and 145K sulphated glycoproteins as components of Reichert's membrane.Developmental Biology 90, 210–4.

    PubMed  Google Scholar 

  • Hook, M., Kjellen, L., Johansson, S. &Robinson, J. (1984) Cell-surface glycosaminoglycans.Annual Review of Biochemistry 53, 847–69.

    PubMed  Google Scholar 

  • Kanwar, Y. S. &Farquhar, M. G. (1979) Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the lamina rarae by cationic probes.Journal of Cell Biology 81, 137–53.

    PubMed  Google Scholar 

  • Kanwar, Y. S., Linker, A. &Farquhar, M. G. (1980) Increased permeability of glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion.Journal of Cell Biology 86, 688–93.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–2.

    PubMed  Google Scholar 

  • Lander, A. D., Fujii, D. K., Gospodarowicz, D. &Reichardt, L. F. (1982) Characterization of a factor that promotes neurite outgrowth: evidence linking activity to a heparan sulfate proteoglycan.Journal of Cell Biology 94, 574–85.

    PubMed  Google Scholar 

  • Lander, A. D., Fujii, D. K. &Reichardt, L. F. (1985) Purification of a factor that promotes neurite outgrowth: isolation of laminin and associated molecules.Journal of Cell Biology 101, 898–913.

    PubMed  Google Scholar 

  • Laskey, R. A. &Mills, A. D. (1975) Quantitative film detection of3H and14C in polyacrylamide gels by fluorography.European Journal of Biochemistry 56, 335–41.

    PubMed  Google Scholar 

  • Laurie, G. W., Leblond, C. P. &Martin, G. R. (1983) Light microscopic immunolocalization of type IV collagen, laminin, heparan sulfate proteoglycan and fibronectin in the basement membranes of a variety of rat organs.American Journal of Anatomy 167, 71–82.

    PubMed  Google Scholar 

  • Linker, A. &Hovingh, P. (1972) Heparinase and heparitinase from flavobacteria.Methods in Enzymology 28, 902–11.

    Google Scholar 

  • Low, F. N. (1976) The perineurium and connective tissue of peripheral nerve. InThe Peripheral Nerve (edited byLandon, D. N.), pp. 159–87. London: Chapman and Hall.

    Google Scholar 

  • Maciag, T., Mehlman, T., Friesel, R. &Schreiber, A. B. (1984) Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain.Science 225, 932–5.

    PubMed  Google Scholar 

  • Matthew, W. D., Greenspan, R. J., Lander, A. D. &Reichardt, L. F. (1985) Immunopurification and characterization of a neuronal heparan sulfate proteoglycan.Journal of Neuroscience 5, 1842–50.

    PubMed  Google Scholar 

  • Matthew, W. D. &Patterson, P. H. (1983) The production of a monoclonal antibody that blocks the action of the neurite outgrowth-promoting factor.Cold Spring Harbor Symposium on Quantitative Biology 48, 625–31.

    Google Scholar 

  • McMahan, U. J., Sanes, J. R. &Marshall, L. M. (1978) Cholinesterase is associated with the basal lamina at the neuromuscular junction.Nature 271, 172–4.

    PubMed  Google Scholar 

  • Meezan, E., Hjelle, J. T. &Brendel, K. (1975) A simple versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues.Life Sciences 17, 1721.

    PubMed  Google Scholar 

  • Mehta, H., Orphe, C., Todd, M. S., Cornbrooks, C. J. &Carey, D. J. (1985) Synthesis by Schwann cells of basal lamina and membrane associated heparan sulfate proteoglycans.Journal of Cell Biology 101, 660–6.

    PubMed  Google Scholar 

  • Moya, F., Bunge, R. P. &Bunge, M. B. (1980) Schwann cells proliferate but fail to differentiate in defined medium.Proceedings of the National Academy of Sciences, USA 77, 6902–6.

    Google Scholar 

  • Ratner, N., Bunge, R. P. &Glaser, L. (1985) A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation.Journal of Cell Biology 101, 744–54.

    PubMed  Google Scholar 

  • Richert, N. D., Davies, P. J., Jay, G. &Pastan, I. H. (1979) Characterization of an immune complex kinase in immunoprecipitates of avian sarcoma virustransformed fibroblasts.Journal of Virology 31, 695–706.

    Google Scholar 

  • Sanes, J. R. (1982) Laminin, fibronectin and collagen in synaptic and extrasynaptic portions of muscle fiber basement membranes.Journal of Cell Biology 93, 442–51.

    PubMed  Google Scholar 

  • Sanes, J. R. (1985) Laminin for axonal guidance?Nature 315, 714–5.

    PubMed  Google Scholar 

  • Sanes, J. R. &Chiu, A. Y. (1983) The basallamina of the neuromuscular junction.Cold Spring Harbor Symposia on Quantitative Biology 48, 667–78.

    PubMed  Google Scholar 

  • Sanes, J. R. &Hall, Z. W. (1979) Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina.Journal of Cell Biology 83, 357–70.

    PubMed  Google Scholar 

  • Sanes, J. R. &Lawrence, J. C. (1983) Activity-dependent accumulation of basal lamina by cultured rat myotubes.Developmental Biology 97, 123–36.

    PubMed  Google Scholar 

  • Sanes, J. R., Marshall, L. M. &McMahan, U. J. (1978) Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites.Journal of Cell Biology 78, 176–98.

    PubMed  Google Scholar 

  • Shively, J. E. &Conrad, H. E. (1976) Formation of anhydrosugars in the chemical depolymerization of heparin.Biochemistry 15, 3932–42.

    PubMed  Google Scholar 

  • Smith, K. K. &Strickland, S. (1981) Structural components and characteristics of Reichert's membrane, an extra-embryonic basement membrane.Journal of Biological Chemistry 256, 4654–61.

    PubMed  Google Scholar 

  • Stadler, H. &Dowe, G. H. C. (1982) Identification of a heparan sulphate-containing proteoglycan as a specific core component of cholinergic synaptic vesicles fromTorpedo mannorata.EMBO Journal 1, 1381–4.

    PubMed  Google Scholar 

  • Vigny, M., Martin, G. R. &Grotendorst, G. R. (1983) Interactions of asymmetric forms of acetylcholinesterase with basement membrane components.Journal of Biological Chemistry 258, 8794–8.

    PubMed  Google Scholar 

  • Wood, P. M. &Williams, A. K. (1984) Oligodendrocyte proliferation and CNS myelination in cultures containing dissociated embryonic neuroglia and dorsal root ganglion neurons.Developmental Brain Research 12, 225–41.

    Google Scholar 

  • Yaffe, D. (1968) Retention of differentiation potentialities during prolonged cultivation of myogenic cells.Proceedings of the National Academy of Sciences, USA 61, 477–83.

    Google Scholar 

  • Yamagata, T., Saito, H., Habuchi, O. &Suzuki, S. (1968) Purification and properties of bacterial chondroitinases and chondrosulfatases.Journal of Biological Chemistry 243, 1523–35.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldridge, C.F., Sanes, J.R., Chiu, A.Y. et al. Basal lamina-associated heparan sulphate proteoglycan in the rat PNS: Characterization and localization using monoclonal antibodies. J Neurocytol 15, 37–51 (1986). https://doi.org/10.1007/BF02057903

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02057903

Keywords

Navigation