Foundations of Physics

, Volume 25, Issue 12, pp 1741–1755 | Cite as

An Einstein addition law for nonparallel boosts using the geometric algebra of space-time

  • B. Tom King
Article

Abstract

The modern use of algebra to describe geometric ideas is discussed with particular reference to the constructions of Grassmann and Hamilton and the subsequent algebras due to Clifford. An Einstein addition law for nonparallel boosts is shown to follow naturally from the use of the representation-independent form of the geometric algebra of space-time.

Keywords

Geometric Algebra Geometric Idea Einstein Addition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Grassmann,Die ausdehnungslehre (Leipzig, 1844; completed in 1862).Google Scholar
  2. 2.
    Sir William Rowan Hamilton,Lectures in Quaternions (Dublin, 1853),Elements of Quaternions (posthumous, 1866).Google Scholar
  3. 3.
    David Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966).Google Scholar
  4. 4.
    David Hestenes and Garret Sobczyk,Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics (Kluwer Academic, Dordrecht, 1984).Google Scholar
  5. 5.
    David Hestenes,New Foundations for Classical Mechanics (Kluwer Academic, Dordrecht, 1990).Google Scholar
  6. 6.
    T. G. Vold, “An introduction to geometric algebra with an application in rigid body mechanics,”Am. J. Phys. 61, 491–504 (1993); “An introduction to geometric calculus and its application to electrodynamics,”Am. J. Phys. 61, 505–513 (1993).Google Scholar
  7. 7.
    S. L. Altmann,Rotations, Quaternions and Double Groups (Oxford University Press, Oxford, England, 1986), Chapter 12.Google Scholar
  8. 8.
    Bernard Jancewicz,Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Teaneck, New Jersey, 1988).Google Scholar
  9. 9.
    S. Gull, A. Lasenby, and C. Doran, “Imaginary numbers are not real—the geometric algebra of spacetime,”Found. Phys. 23, 175–1201 (1993).Google Scholar
  10. 10.
    C. Doran, A. Lasenby, and S. Gull, “States and operators in the space-time algebra,”Found. Phys. 23, 1239–1264 (1993).Google Scholar
  11. 11.
    A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “A multivector derivative approach to Lagrangian field theory,”Found. Phys. 23, 1295–1327 (1993).Google Scholar
  12. 12.
    S. F. Gull, A. N. Lasenby, and C. J. L. Doran, “Electron paths, tunnelling and diffraction in the spacetime algebra,”Found. Phys. 23, 1329–1356 (1993).Google Scholar
  13. 13.
    A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “Grassmann calculus, pseudo-classical mechanics and geometric algebra,”J. Math. Phys. 34, 3683–3712 (1993).Google Scholar
  14. 14.
    J. Ricardo Zeni and Waldyr A. Rodrigues, Jr., “A thoughtful study of Lorentz transformations by clifford algebras,”Int. J. Mod. Phys. 7, 1793–1817 (1992).Google Scholar
  15. 15.
    N. A. Doughty,Lagrangian Interaction: An Introduction to Relativistic Symmetry in Electrodynamics and Gravitation (Addison-Wesley, Reading, Massachusetts, 1990); Sec. 13.7 consider the alternative factorizations of a Lorentz transformation.Google Scholar
  16. 16.
    John David Jackson,Classical Electrodynamics (Wiley, New York, 1962).Google Scholar
  17. 17.
    Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler,Gravitation (Freeman, San Francisco, 1973), pp. 1135et. seq. Google Scholar
  18. 18.
    A. C. Hirschfeld and F. Metzger, “A simple formula for combining rotations and Lorentz boosts,”Am. J. Phys. 54, 550–552 (1986).Google Scholar
  19. 19.
    B. Tom King, “Reflection optics, an Einstein addition law for nonparallel boosts, and the geometric algebra of space-time,”J. Opt. Soc. Am. A,12, 773–780 (1995).Google Scholar
  20. 20.
    Abraham A. Ungar, “Thomas precession and its associated grouplike structure,”Am. J. Phys. 59, 824–834(1991).Google Scholar
  21. 21.
    N. Salingaros, “The Lorentz group and the Thomas precession. II. Exact results for the product of two boosts,”J. Math. Phys. 27, 157–162 (1986).Google Scholar
  22. 22.
    D. G. Ashworth, “A new and simple deduction of the Thomas precession,”Nuovo Cimento 40, 242–246 (1977).Google Scholar
  23. 23.
    H. Goldstein,Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1980), 2nd edn.Google Scholar
  24. 24.
    R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Hamilton's theory of turns generalized toSp(2,R),”Phys. Rev. Lett. 62, 1331–1334 (1989).Google Scholar
  25. 25.
    R. Simon, N. Mukunda, and E. C. G. Sudarshan, “The theory of screws: A geometric representation for the groupSU(1,1),”J. Math. Phys. 30, 1000–1006 (1989).Google Scholar
  26. 26.
    R. Simon and Mukunda, N., “Hamilton's turns and geometric phase for two-level systems,”J. Phys. A 25, 6135–6144 (1992).Google Scholar
  27. 27.
    P. Lounesto, “Spinor-Valued Regular Functions in Hypercomplex Analysis,” PhD thesis, Helsinki University of Technology, 1979.Google Scholar
  28. 28.
    M. Riesz,Clifford Numbers and Spinors (Kluwer, Academic, Dordrecht, 1993). Reprinted from Lecture series No. 38, University of Maryland, College Park, 1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • B. Tom King
    • 1
  1. 1.Department of Physics and AstronomyUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations