Skip to main content
Log in

Causal interpretation of the modified Klein-Gordon equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A consistent causal interpretation of the Klein-Gordon equation treated as a field equation has been developed, and leads to a model of entities described by the Klein-Gordon equation, i.e., spinless, massive bosons, as objectively existing fields. The question arises, however, as to whether a causal interpretation based on a particle ontology of the Klein-Gordon equation is also possible. Our purpose in this article will be to indicate, by making what we believe is a best possible attempt at developing a particle interpretation of the Klein-Gordon equation, that such an interpretation is untenable. To resolve the nonpositive-definite probability density difficulties with the Klein-Gordon equation, we modify this equation by the introduction of an evolution parameter. We base our subsequent considerations on this modified Klein-Gordon equation. Partly to motivate the need for a relativistic causal interpretation and partly to give emphasis to aspects of the causal interpretation often overlooked, we begin our article with a brief historical survey of the causal interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden variables,’ I and II,”Phys. Rev. 85(2), 166, 180 (1952).

    Google Scholar 

  2. L. de Broglie,Une Tentative d'Interprétation Causale et Non-Linéaire de la Mécanique Ondulatoire (Gauthier-Villars, Paris, 1956); English translation:Nonlinear Wave Mechanics (Elsevier, Amsterdam, 1960).

    Google Scholar 

  3. W. Heisenberg, “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen,”Z. Phys. 33, 879 (1925).

    Google Scholar 

  4. E. Schrödinger, “Quantisierung als Eigenwertproblem,”Ann. Phys. (Leipzig) 79, 361 (1926).

    Google Scholar 

  5. E. Schrödinger, “Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen,”Ann. Phys. 79, 734 (1926).

    Google Scholar 

  6. J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932); English translation:Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    Google Scholar 

  7. J. T. Cushing,Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony (University of Chicago Press, Chicago, 1994).

    Google Scholar 

  8. D. Bohm, “Proof that probability density approaches ¦ψ¦2 in causal interpretation of the quantum theory,”Phys. Rev. 89(2), 458 (1953).

    Google Scholar 

  9. D. Bohm and J. P. Vigier, “Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations,”Phys. Rev. 96(1), 208 (1954).

    Google Scholar 

  10. A. Valentini, “Signal-locality, uncertainty, and the subquantum H-Theorem,”Phys. Lett. A 156, 5 (1991);

    Google Scholar 

  11. A. Valentini, “Signal-locality, uncertainty, and the subquantum H-Theorem. II,”Phys. Lett. A 158, 1 (1991).

    Google Scholar 

  12. A. Valentini, “On the pilot-wave theory of classical, quantum and subquantum physics,” Ph.D. Thesis, ISAS, Trieste, 1992.

    Google Scholar 

  13. D. Bohm and B. J. Hiley,The Undivided Universe: An Ontological Interpretation of the Quantum Theory (Routledge, London, 1992).

    Google Scholar 

  14. M. Schönberg,Nuovo Cimento 11, 674 (1954).

    Google Scholar 

  15. T. Takabayasi, “Relativistic hydrodynamics of the Dirac matter,”Suppl. Prog. Theor. Phys. 5, 1 (1958).

    Google Scholar 

  16. N. Cufaro-Petroni and J. P. Vigier,Int. J. Theor. Phys. 18(11), 807 (1979);

    Google Scholar 

  17. J. P. Vigier,Lett. Nuovo Cimento 24(8), 258 (1979);

    Google Scholar 

  18. N. Cufaro-Petroni and J. P. Vigier,Lett. Nuovo Cimento 26(5), 149 (1979);

    Google Scholar 

  19. J. P. Vigier,Lett. Nuovo Cimento 29(14), 467 (1980);

    Google Scholar 

  20. N. Cufaro-Petroni, Ph. Droz-Vincent, and J. P. Vigier,Lett. Nuovo Cimento 31(12), 415 (1981);

    Google Scholar 

  21. J. P. Vigier,Astron. Nachr. 303(1), 55 (1982);

    Google Scholar 

  22. N. Cufaro-Petroni and J. P. Vigier,Found. Phys. 13(2), 253 (1983).

    Google Scholar 

  23. E. Nelson,Phys. Rev. 150(4), 1079 (1966);

    Google Scholar 

  24. E. Nelson,Dynamical Theories of Brownian Motion (Princeton University Press, Princeton, 1972);

    Google Scholar 

  25. L. de la Peña-Auerbach,Proceedings, Escueia Lationamericana de Fisica, B. Gomezet al., eds. (World Scientific, Singapore, 1983), p. 428;

    Google Scholar 

  26. E. Nelson,Quantum Fluctuations (Princeton University Press, Princeton, 1985).

    Google Scholar 

  27. D. Bohm and B. J. Hiley, “Non-locality and locality in the stochastic interpretation of quantum mechanics,”Phys. Rep. 172(3), 93 (1989).

    Google Scholar 

  28. D. Bohm, R. Schiller, and J. Tiomno, “A causal interpretation of the Pauli equation (A),”Nuovo Cimento Suppl. 1(1), 48 (1955);

    Google Scholar 

  29. D. Bohm and R. Schiller, “A causal interpretation of the Pauli equation (B),”Nuovo Cimento Suppl. 1(1), 67 (1955).

    Google Scholar 

  30. C. Dewdney, P. R. Holland, and A. Kyprianidis, “What happes in a spin measurement,”Phys. Lett. A 119, 259 (1986);

    Google Scholar 

  31. C. Dewdney, P. R. Holland, and A. Kyprianidis,J. Math. Phys. A 20, 4717 (1987);

    Google Scholar 

  32. C. Dewdney, P. R. Holland, A. Kyprianidis, and J. P. Vigier, “Spin and nonlocality in quantum mechanics,”Nature (London) 336, 536 (1988).

    Google Scholar 

  33. J. S. Bell,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987), Chap. 19.

    Google Scholar 

  34. P. N. Kaloyerou, “The causal interpretation of the electromagnetic field,”Phys. Rep. 244(6), 287 (1994).

    Google Scholar 

  35. P. N. Kaloyerou, “Investigation of the quantum potential in the relativistic domain,” Ph.D. Thesis, London, 1985.

  36. D. Bohm, B. J. Hiley, and P. N. Kaloyerou, “An ontological basis for the quantum theory,”Phys. Rep. 144(6), 349 (1987).

    Google Scholar 

  37. V. Fock,Phvs. Z. Sowjetunion 12, 404 (1937).

    Google Scholar 

  38. E. C. G. Stückleberg,Helv. Phys. Acta 14, 322, 588 (1941);15, 23 (1942).

    Google Scholar 

  39. R. P. Feynman,Phys. Rev. 76(6), 769 (1949).

    Google Scholar 

  40. Y. Nambu,Prog. Theor. Phys. V(1), 82 (1950);

    Google Scholar 

  41. J. H. Cooke,Phys. Rev. 166(5), 1293 (1968);

    Google Scholar 

  42. L. P. Horwitz and C. Piron,Helv. Phys. Acta 46, 316 (1973);

    Google Scholar 

  43. L. P. Horwitz, C. Piron, and F. Reuse,Helv. Phys. Acta 48, 546 (1975);

    Google Scholar 

  44. C. Piron and F. Reuse,Helv. Phys. Acta 51, 146 (1978);

    Google Scholar 

  45. F. Reuse,Helv. Phys. Acta 5, 157 (1978);

    Google Scholar 

  46. L. P. Horwitz and A. Soffer,Helv. Phys. Acta 53, 112 (1980);

    Google Scholar 

  47. L. P. Horwitz and F. C. Rotbart,Phys. Rev. D 24(8), 2127 (1981);

    Google Scholar 

  48. J. R. Fanchi and R. E. Collins,Found. Phys. 8(11/12), 851 (1978);

    Google Scholar 

  49. R. E. Collins and J. R. Fanchi,Nuovo Cimenta A 48(3), 314 (1978);

    Google Scholar 

  50. J. R. Fanchi,Phys. Rev. D 20(12), 3108 (1979);

    Google Scholar 

  51. J. R. Fanchi,J. Math. Phys. 22(4), 794 (1981);

    Google Scholar 

  52. J. R. Fanchi,Found. Phys. 11(5/6), 493 (1981);

    Google Scholar 

  53. J. R. Fanchi,Phys. Rev. A 34(3), 1677 (1986);

    Google Scholar 

  54. D. M. Greenberger,J. Math. Phys. 11(8), 2329, 2341 (1970):15(4), 395, 406 (1974);

    Google Scholar 

  55. J. Hostler,J. Math. Phys. 21(9), 2461 (1980).

    Google Scholar 

  56. R. P. Feynman,Phys. Rev. 84(1), 108 (1951);

    Google Scholar 

  57. J. Schwinger,Phys. Rev. 82(5), 664 (1951).

    Google Scholar 

  58. A. Kyprianidis, “Scalar time parametrization of relativistic quantum mechanics: The covariant Schrödinger formalism,Phys. Rep. 155(1), 1 (1987).

    Google Scholar 

  59. E. Schrödinger,Ann. Phys. 81, 109 (1926).

    Google Scholar 

  60. W. Gordon,Z. Phys. 40, 117 (1926).

    Google Scholar 

  61. O. Klein,Z. Phys. 41, 407 (1927).

    Google Scholar 

  62. D. I. Blokhintsev,Sov. J. Part. Nucl. 5, 242 (1975).

    Google Scholar 

  63. A. Kyprianidis,Phys. Lett. A 111, 111 (1985).

    Google Scholar 

  64. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964);

    Google Scholar 

  65. W. Greiner,Relativistic Quantum Mechanics: Wave Equations (Springer, Berlin, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Other work commitments prevented publication of this article in the special issue ofFoundations of Physics in honor of Prof. J. P. Vigier. I would nevertheless like to dedicate this work to Prof. Vigier in recognition of this untiring contributions to the causal interpretation in particular and to the foundations of physics in general. I take this opportunity to thank Prof. Vigier for his help during my Royal Society fellowship spent at the Institut Henri Poincaré in the academic year 1988–1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaloyerou, P.N. Causal interpretation of the modified Klein-Gordon equation. Found Phys 25, 1413–1460 (1995). https://doi.org/10.1007/BF02057461

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02057461

Keywords

Navigation