Skip to main content
Log in

Magnetic quenching of positronium

  • Invited Talks
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The positron-electron bound system in condensed matter (Ps) is a probe of primary importance for the investigation of the microscopic structure of liquids and non-metallic solids. The physical properties of Ps in matter are generally different with respect to Psin vacuo, owing to the interactions with the surrounding electrons. Information on the structure of Ps can be obtained through the Zeeman effect, that induces a mixing of them=0 Ps ground state sublevels with a shortening of the triplet lifetime (magnetic quenching). This method, which can be coupled with any positron annihilation experimental technique, showed its effectiveness to discriminate among competitive reactions between Ps and the surrounding medium, as well as to clarify the origin of lifetime components of uncertain attribution. The discovery of anomalous magnetic effects in different organic liquids and solids has opened new perspectives in the studies of positron-multielectrons bound systems. Magnetic quenching experiments carried out with polarized positron beams display a complex and fascinating phenomenology, whose explanation could shed light on the role of the positron-medium interactions which take place within the early instants after the emission of the positron. In the present paper various aspects of the magnetic quenching method will be examined, with emphasis on recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. DEUTSCH, E. DULIT, Phys. Rev., 84 (1951) 601.

    Google Scholar 

  2. O. HALPERN, Phys. Rev., 94 (1955) 904.

    Google Scholar 

  3. A. P. MILLS, J. Chem. Phys., 62 (1975) 2646.

    Google Scholar 

  4. Y. NAGASHIMA, T. HYODO, Phys. Rev., B 41 (1991) 3937.

    Google Scholar 

  5. L. GRODZINS, Process in Nuclear Physics, Vol. 7, Pergamon Press, New York, N.Y., 1959, p. 165.

    Google Scholar 

  6. J. J. STEINBACHER, A. T. STEWART, Mat. Sci. Forum, 105–110 (1992) 1711.

    Google Scholar 

  7. I. BILLARD, J. Ch. ABBÉ, G. DUPLÂTRE, Chem. Phys., 127 (1988) 273.

    Google Scholar 

  8. J. MAJOR, A. SEEGER, O. STRITZKE, Mat. Sci. Forum, 105–110 (1992) 1939.

    Google Scholar 

  9. V. L. TELEGDI, J. C. SENS, D. D. YOVANOVICH, S. D. WARSHAW, Phys. Rev., 104 (1956) 867.

    Google Scholar 

  10. D. A. DIEHL, D. M. SCHRADER, J. Chem. Phys., 94 (1991) 289.

    Google Scholar 

  11. A. DUPASQUIER, in: Positron Solid State Physics, A. DUPASQUIER, W. BRANDT (Eds), North Holland, Amsterdam, 1983, p. 510.

    Google Scholar 

  12. A. DUPASQUIER, in: Positron Annihilation Studies of Fluids, S. C. SHARMA, (Ed.), World Scientific, Singapore, 1987, p. 485.

    Google Scholar 

  13. T. McMULLEN, M. J. STOTT, Can. J. Phys., 61 (1983) 504.

    Google Scholar 

  14. V. I. GOLDANSKII At. Energy Rev., 6 (1968) 1.

    Google Scholar 

  15. S. DE BENEDETTI, H. C. CORBEN, Ann. Rev. Nucl. Sci., 4 (1954) 195.

    Google Scholar 

  16. A. DUPASQUIER, P. DE NATALE, A. ROLANDO, Phys. Rev., B 43 (1991) 10036.

    Google Scholar 

  17. G. CONSOLATI, F. QUASSO, unpublished results.

  18. P. KINDL, Phys. Status Solidi, A 81 (1984) 293.

    Google Scholar 

  19. Z. Q. CHEN, Z. TANG, S. J. WANG, Mat. Sci. Forum, 175–178 (1995) 667.

    Google Scholar 

  20. C. DAUWE, G. CONSOLATI, J. Phys. IV, Vol. 3, Coll. C4 (1993) 161.

    Google Scholar 

  21. M. BERTOLACCINI, A. BISI, G. GAMBARINI, L. ZAPPA, J. Phys. C: Solid State Phys., 7 (1974) 3827.

    Google Scholar 

  22. G. CONSOLATI, F. QUASSO Appl. Phys., A, 50 (1990) 43.

    Google Scholar 

  23. Y. ITO, H. HIROSE, Y. TABATA, Appl. Phys., A 50 (1990) 39.

    Google Scholar 

  24. M. H. YAM, P. O. EGAM, W. E. FRIEZE, V. W. HUGHES Phys. Rev., A 18 (1978) 350.

    Google Scholar 

  25. A. Z. VARISOV, Opt. Spectrosc. (USSR), 53 (1982) 90.

    Google Scholar 

  26. I. BILLARD, J. CH. ABBÉ, G. DUPLÂTRE, Chem. Phys., 184 (1994) 365.

    Google Scholar 

  27. A. BISI, G. CONSOLATI, L. ZAPPA, Hyperfine Interactions, 36 (1987) 29.

    Google Scholar 

  28. T. GOWOREK, A. BADIA, G. DUPLÂTRE, J. Chem. Soc. Farady Trans., 90 (1994) 150.

    Google Scholar 

  29. A. BISI, G. CONSOLATI, G. GAMBARINI, L. ZAPPA, Lett. Nuovo Cimento, 40 (1984) 176.

    Google Scholar 

  30. S. ROCHANAKII D. M. SCHRADER, in: Positron Annihilation, P. C. JAIN, R. M. SINGRU and K. P. GOPINATHAN (Eds), World Scientific, Singapore, 1985, p. 193.

    Google Scholar 

  31. I. BILLARD, J. CH. ABBÉ, G. DUPLÂTRE J. Chem. Phys., 97 (1992) 1548.

    Google Scholar 

  32. R. S. BRUSA, A. DUPASQUIER, S. LONGANO, S. OSS, Phys. Rev., B 43 (1991) 12715.

    Google Scholar 

  33. G. CONSOLATI, F. QUASSO, Phys. Rev., B 50 (1994) 5848.

    Google Scholar 

  34. O. MOGENSEN, Mat. Sci. Forum, 105–110 (1992) 393.

    Google Scholar 

  35. G. CONSOLATI, F. QUASSO, J. Phys., Condensed Matter 2 (1990) 3941.

    Google Scholar 

  36. N. GAMBARA, Nuovo Cimento, 17D (1995) 503.

    Google Scholar 

  37. E. D. HANDEL, H. J. ACHE, J. Chem. Phys., 71 (1979) 2183.

    Google Scholar 

  38. S. VASS, in: Positron and Positronium Chemistry, Y. C. JEAN (Ed.), World Scientific, Singapore, 1990, p. 423.

    Google Scholar 

  39. Y. CHEVALIER, T. ZEMB, Rep. Prog. Phys., 53 (1990) 279.

    Google Scholar 

  40. S. VASS, KFKI-1990-19/J preprint, 1990.

  41. A. BISI, G. CONSOLATI, G. GAMBARINI, L. ZAPPA, Nuovo Cimento, 65B (1981) 442.

    Google Scholar 

  42. G. CONSOLATI, I. GENCO, M. PEGORARO, L. ZANDERIGHI, J. Polymer Sci., B 34 (1996) 357.

    Google Scholar 

  43. V. I. GOLDANSKII A. D. MOKRUSHIN, A. O. TATUR, V. P. SHANTAROVICH, Appl. Phys., 5 (1975) 379.

    Google Scholar 

  44. C. S. WU, MOSKOWSKI, Beta Decay, Interscience Publ., New York, N.Y., 1966.

    Google Scholar 

  45. D. W. GIDLEY, A. R. KOYMEN, T. WESTON CAPEHART, Phys. Rev. Lett., 49 (1982) 1779.

    Google Scholar 

  46. J. VAN HOUSE, P. W. ZITZEWITZ, Phys. Rev., A 29 (1984) 96.

    Google Scholar 

  47. A. SEEGER, J. MAJOR, F. BANHART, Phys. Status Solidi, A 102 (1987) 91.

    Google Scholar 

  48. A. SCHENCK, Muon Spin Rotation Spectroscopy, Bristol/Boston, 1985, p. 43.

  49. G. MAIER, U. HAEBERLEN, H. C. WOLF, Phys. Lett., A 25 (1967) 323.

    Google Scholar 

  50. W. M. KENKRE, P. REINEKER, Exciton Dynamics in Molecular Crystals and Aggregates, Springer Tracts in Modern Physics, Vol. 94, Springer-Verlag, Berlin, 1982, p. 111.

    Google Scholar 

  51. A. BISI, G. CONSOLATI, F. QUASSO, L. ZAPPA, Nuovo Cimento, 12D (1990) 831.

    Google Scholar 

  52. A. BISI, G. CONSOLATI, F. QUASSO L. ZAPPA, Nuovo Cimento, 11D (1989) 635.

    Google Scholar 

  53. G. CONSOLATI, F. QUASSO J. Phys. B: At. Mol. Opt. Phys., 26 (1993) 4623.

    Google Scholar 

  54. J. B. BIRKS, in: The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, 1964.

    Google Scholar 

  55. S. LINDEROTH, H. RAJAINMAKI, H. E. HANSEN, R. M. NIEMINEN, J. Phys. Soc. Japan, 12 (1986) 4504.

    Google Scholar 

  56. R. KUBO, T. TOYABE, in: Magnetic Resonance and Relaxation, R. BLINC (Ed.), North Holland, Amsterdam, 1967, p. 810.

    Google Scholar 

  57. R. S. HAYANO, V. J. VEMURA, J. IMAZATO, N. NISHINA, T. YAMAZACHI, R. KUBO, Phys. Rev., B 20 (1979) 850.

    Google Scholar 

  58. F. VESTER, T. L. V. ULBRICHT, H. KRAUSS, Naturwiss., 46 (1959) 68.

    Google Scholar 

  59. P. S. FARAGO, J. Phys. B 13 (1980) L567; J. Phys., B14 (1981) L743.

    Google Scholar 

  60. V. A. ONISHCHUK, Sov. Phys. JEPT, 54 (1981) 25.

    Google Scholar 

  61. A. RICH, J. VAN HOUSE, R. A. HEGSTROM, Phys. Rev. Lett., 48 (1982) 1341.

    Google Scholar 

  62. D. W. WALKER, J. Phys., B 15 (1982) L289.

    Google Scholar 

  63. K. BLUM, D. THOMPSON, J. Phys., B 22 (1989) 1823.

    Google Scholar 

  64. R. FRANDEYER, D. THOMPSON, K. BLUM, J. Phys., B23 (1990) 3031.

    Google Scholar 

  65. A. BISI, N. GAMBARA, L. ZAPPA, Nuovo Cimento, 14D (1992) 617.

    Google Scholar 

  66. A. BISI, N. GAMBARA, L. ZAPPA, Nuovo Cimento, 15D (1993) 1315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Consolati, G. Magnetic quenching of positronium. Journal of Radioanalytical and Nuclear Chemistry, Articles 210, 273–292 (1996). https://doi.org/10.1007/BF02056373

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02056373

Keywords

Navigation