Journal of Radioanalytical and Nuclear Chemistry

, Volume 210, Issue 1, pp 161–169 | Cite as

Biosorption and retention of several actinide and fission-product elements by biomass fromMycobacterium phlei

  • M. Bouby
  • H. J. Mac Cordick
  • I. Billard


The properties of mobile, 5% w/w cell suspensions ofMycobacterium phlei have been examined for their capacity to adsorb and retain uranyl(VI) and neptuny(V) cations from nitrate-buffered solutions at pH 1. Equilibrium conditions of sorption were attained after 3 hours for concentrations (C) in the range 0.015–18 mM cation and indicated a maximum specific adsorption capacity (Qemax) of 182 μmol/g dry biomass forC≥10 mM. NpO 2 + generally showed higherQe values than UO 2 2+ at corresponding concentrations. Lixiviation tests with cation-loaded biomass in neutral and acidic media indicated that the extent of desorption did not vary extensively between pH 7 and pH 1 and did not exceed 3% for U and 1% for Np ions at pH 7 during 7-day periods of treatment. Analogous experiments with U-loaded biomass subjected to neutron activation prior to lixiviation enabled retention measurements for various fission-product isotopes produced in situ and showed that retention of239Np formed within the cellular matrix was >99% at pH 7 and ≥94% at pH 1.


Biomass Cell Suspension Equilibrium Condition Adsorption Capacity Uranyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Multi-author review, Experientia, 46 (1990) 777.Google Scholar
  2. 2.
    FEMS Symposium, Metals-Microorganisms. Relationships & Applications, 5–7 May 1993, Metz (France).Google Scholar
  3. 3.
    Y. ANDRÈS, H. J. MACCORDICK, J.-C. HUBERT, Appl. Microbiol. Biotechnol., 39 (1993) 413.Google Scholar
  4. 4.
    Y. ANDRÈS, H. J. MACCORDICK, J.-C. HUBERT, Appl. Microbiol. Biotechnol., 44 (1995) 271.Google Scholar
  5. 5.
    H. J. MACCORDICK, J.-C. HUBERT, J.-J. SCHLEIFFER, J. Radioanal. Nucl. Chem., 135 (1989) 349.Google Scholar
  6. 6.
    H. J. MACCORDICK, J.-M. PAULUS, M.-G. BONTEMS, J. Radioanal. Nucl. Chem., 145 (1990) 231.Google Scholar
  7. 7.
    Y. ANDRÈS, H. J. MACCORDICK, J.-C. HUBERT, J. Radioanal. Nucl. Chem., 166 (1992) 431.Google Scholar
  8. 8.
    S. DENEUX-MUSTIN, J. ROUILLER, S. DURECU, C. MUNIER-LAMY, J. BERTHELIN, C.R. Acad. Sci. Paris, Série II, 319 (1994) 1057.Google Scholar
  9. 9.
    A. M. MARQUES, X. ROCA, M. D. SIMON-PUJOL, M. C. FUSTE, F. CONGREGADO, Appl. Microbiol. Biotechnol., 35 (1991) 406.Google Scholar
  10. 10.
    H. J. MACCORDICK, J. Radioanal. Nucl. Chem., 129 (1988) 173.Google Scholar
  11. 11.
    H. J. MACCORDICK, M. KADRI, J. Radioanal. Nucl. Chem., 127 (1988) 51.Google Scholar
  12. 12.
    S. BRUNAUER, P. H. EMMETT, E. TELLER, J. Am. Chem. Soc., 60 (1938) 309.Google Scholar
  13. 13.
    L. De ROME, G. M. GADD, Appl. Microbiol. Biotechnol., 26 (1987) 84.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • M. Bouby
    • 1
  • H. J. Mac Cordick
    • 1
  • I. Billard
    • 1
  1. 1.Laboratoire de Chimie Nucléaire, IN2P3Centre de Recherches NucléairesStrasbourg, Cedex 2France

Personalised recommendations