Skip to main content
Log in

Carbon isotope effect studies in the mechanism of reactions of alkynes with formic acid

I. Carbon-13 kinetic isotope effect in the mechanism of reaction of phenylacetylene with formic acid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Carbon-13 fractionation observed in the course of carbon monoxide formation in the reaction of phenylacetylene with the large excess of liquid formic acid in the temperature interval 20–100°C has been investigated and compared with the13C fractionation in the dehydration of pure liquid formic acid. The anomalous temperature dependence of the13C fractionation has been interpreted as caused by the change of the kinetics and of the mechanism of CO formation from the one involving13C−H bond rupture rate determining step (operating in the presence of phenylacetylene) to the mechanism according to which HCOOH decarbonylates in liquid state. No large increase of the13C fractionation with rising of the reaction temperature from 70 to 134°C has been found in the case of decarbonylation of F.A. in the presence of large excess of phenylacetylene. The13C KIE was of 1.020 in the temperature interval 90–133.7°C in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. MENASHE, D. RESHEF, Y. SHVO, J. Org. Chem., 56 (1991) 2912.

    Google Scholar 

  2. N. MENASHE, Y. SHVO, J. Org. Chem., 58 (1993) 7434.

    Google Scholar 

  3. J. MARCH, Advanced Organic Chemistry, John Wiley, New York, 1985, p. 683.

    Google Scholar 

  4. M. ROTEM, I. GOLDBERG, U. SHMUELI, Y. SHVO, J. Organomet. Chem., 314 (1986) 185.

    Google Scholar 

  5. M. ROTEM, Y. SHVO, J. Organomet. Chem., 448 (1993) 189.

    Google Scholar 

  6. J. P. MONTHEARD, M. CAMPS, A. BENZAID, Synthetic Commun., 13 (1983) 663.

    Google Scholar 

  7. M. ZIELIŃSKI, A. ZIELIŃSKA, J. Radioanal. Nucl. Chem., 198 (1995) 3.

    Google Scholar 

  8. M. ZIELIŃSKI, A. ZIELIŃSKA, H. PAPIERNIK-ZIELINSKA, Isotopes Environ. Health Stud., 32 (1996) 1.

    Google Scholar 

  9. M. ZIELIŃSKI, A. ZIELIŃSKA, H. PIERNIK-ZIELINSKA, J. Radioanal. Nucl. Chem., 183 (1994) 301.

    Google Scholar 

  10. P. E. YANKWICH, R. H. HASCHEMEYER, J. Phys. Chem., 67 (1963) 694.

    Google Scholar 

  11. M. ZIELIŃSKI, Nucl. Appl., 2 (1966) 51.

    Google Scholar 

  12. M. ZIELIŃSKI, M. KAŃSKA, in: The Chemistry of Sulphenic Acids and their Derivatives, S. PATAI (Ed.), John Wiley, Chichester, 1990, Chapter 14, p. 641.

    Google Scholar 

  13. H. N. BARHAM, L. W. CLARK, J. Am. Chem. Soc., 73 (1951) 4638.

    Google Scholar 

  14. R. C. MILLIKAN, K. S. PITZER, J. Am. Chem. Soc., 80 (1958) 3515.

    Google Scholar 

  15. Y. T. CHANG, Y. YAMAGUCHI, W. H. MILLER, H. F. SCHAEFER, J. Am. Chem. Soc., 109 (1987) 7245.

    Google Scholar 

  16. J. E. BERTIE, K. H. MICHAELIAN, J. Chem. Phys., 76 (1982) 886.

    Google Scholar 

  17. J. D. GODDARD, Y. YAMAGUCHI, H. F. SCHAEFER, J. Chem. Phys., 96 (1992) 1158.

    Google Scholar 

  18. J. S. FRANCISCO, J. Chem. Phys., 96 (1992) 1167.

    Google Scholar 

  19. K. H. LIESER, Einführung in die Kernchemie, Verlag Chemie GmbH, Weinheim, 1968, p. 122.

    Google Scholar 

  20. G. A. ROPP, J. Am. Chem. Soc., 82 (1960) 842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zieliński, M., Papiernik-Zielińska, H., Zielińska, A. et al. Carbon isotope effect studies in the mechanism of reactions of alkynes with formic acid. Journal of Radioanalytical and Nuclear Chemistry Articles 210, 15–25 (1996). https://doi.org/10.1007/BF02055402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02055402

Keywords

Navigation