Foundations of Physics

, Volume 25, Issue 2, pp 349–360 | Cite as

On the reality of space-time geometry and the wavefunction

  • J. Anandan
  • H. R. Brown


The action-reaction principle (AR) is examined in three contexts: (1) the inertial-gravitational interaction between a particle and space-time geometry, (2) protective observation of an extended wave function of a single particle, and (3) the causal-stochastic or Bohm interpretation of quantum mechanics. A new criterion of reality is formulated using the AR principle. This criterion implies that the wave function of a single particle is real and justifies in the Bohm interpretation the dual ontology of the particle and its associated wave function. But it is concluded that the Bohm theory is not dynamically complete because the particle and its associated wave function do not satisfy the AR principle.


Wave Function Quantum Mechanic Single Particle Extended Wave Bohm Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A Einstein, Schweizeriche naturforschende Gesellschaft,Verhandlungen 105, 85–93 (1924). English translation in S. Saunders and H. R. Brown (eds.),The Philosophy of Vacuum (Clarendon Press, Oxford, 1991). pp. 13–20.Google Scholar
  2. 2.
    A Einstein,Naturwissenschaften 15, 273 (1927). English translation in A. Einstein,Ideas and Opinions (Bonanza Books, New York, 1954), pp. 253–261.Google Scholar
  3. 3.
    J. Ehlers, F. A. E. Pirani, and A. Schild, inPapers in Honour of J. L. Synge, L. O'Raifeartaigh, ed. (Clarendon Press, Oxford, 1972).Google Scholar
  4. 4.
    A. Einstein,The Meaning of Relativity (Princeton University Press, Prionceton, 1922).Google Scholar
  5. 5.
    Y. Aharonov and J. Anandan,Phys. Rev. Lett. 58, 1593 (1987); J. Anandan and Y. Aharonov,Phys. Rev. D 38, 1963 (1988); J. Anandan, Found. Phys.21, 1265 (1991).Google Scholar
  6. 6.
    J. Anandan,Phys. Rev. D 15, 1448 (1977); J. Anandan,Nuovo Cimento A 53, 221 (1979).Google Scholar
  7. 7.
    L. Stodolsky,Gen. Relativ. Gravit. 11, 391 (1979).Google Scholar
  8. 8.
    J. Anandan inQuantum Theory and Gravitation, Proceedings of the New Orleans Conference, May 1979, A. R. Marlow, ed. (Academic Press, New York, 1980), p. 157Google Scholar
  9. 8a.
    J. Anandan inTopological Properties and Global Structure of Space-Time, P. G. Bergmann and V. De Sabbata eds. (Plenum, New York, 1985), p. 1–14.Google Scholar
  10. 9.
    H. Rauch, W. Treimer, and U. Bonse,Phys. Lett. A 47, 425 (1974).Google Scholar
  11. 10.
    A. W. Overhauser and R. Colella,Phys. Rev. Lett. 33, 1237 (1974); R. Colella, A. Overhauser, and S. A. Werner,Phys. Rev. Lett. 34, 1472 (1975).Google Scholar
  12. 11.
    F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nestor,Rev. Mod. Phys. 48, 393 (1976), and references therein; J. Anandan,Nuov. Cimento A 53, 221 (1979).Google Scholar
  13. 12.
    A. Elby, H. Brown, and S. Foster,Found. Phys. 23, 971 (1993).Google Scholar
  14. 13.
    W. Ehrenberg and R. E. Siday,Proc. Phys. Soc. London B 62, 8 (1949); Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959).Google Scholar
  15. 14.
    Y. Aharonov, J. Anandan, and L. Vaidman,Phys. Rev. A 47, 4616 (1993); J. Anandan,Found. Phys. Lett. 6, 503 (1993).Google Scholar
  16. 15.
    Y. Aharonov and L. Vaidman,Phys. Lett. A 178, 38 (1993).Google Scholar
  17. 16.
    D. Bohm and B. J. Hiley,The Undivided Universe (Routledge, London, 1993).Google Scholar
  18. 17.
    P. R. Holland,The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993).Google Scholar
  19. 18.
    J.-P. Vigier,Found. Phys. 24, 61 (1994).Google Scholar
  20. 19.
    A. Einstein,Ann Phys. (Leipzig)17, (1905). English translation inThe Principle of Relativity (Dover, Toronto 1952), p. 35.Google Scholar
  21. 20.
    H. R. Brown, C. Dewdney, and G. Horton, “Bohm particles and their detection in the light of neutron interferometry,”Found. Phys., this issue.Google Scholar
  22. 21.
    J. Anandan,Ann. Inst. Henri Poincaré 49, 271 (1988).Google Scholar
  23. 22.
    D. Dürr, S. Goldstein, and N. Zanghi,J. Stat. Phys. 67, 843 (1992).Google Scholar
  24. 23.
    E. Squires inWaves and Particles in Light and Matter, A. van der Merwe and A. Garuccio. eds. (Plenum, New York, 1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • J. Anandan
    • 1
    • 2
  • H. R. Brown
    • 3
  1. 1.Sub-Faculty of Philosophy and Department of Theoretical PhysicsUniversity of OxfordOxfordUK
  2. 2.Department of Physics and AstronomyUniversity of South CarolinaColumbia
  3. 3.Sub-Faculty of PhilosophyUniversity of OxfordOxfordUK

Personalised recommendations