Annals of Operations Research

, Volume 27, Issue 1, pp 253–283 | Cite as

On parametric nonlinear programming

  • Hubertus Th. Jongen
  • Gerhard -W. Weber
Part II Sensitivity and Stability Results for Nonlinear Programs with Parameters


In this tutorial survey we study finite dimensional optimization problems which depend on parameters. It is our aim to work out several basic connections with different mathematical areas. In particular, attention will be paid to unfolding and singularity theory, structural analysis of families of constraint sets, constrained optimization problems and semi-infinite optimization.


Structural Analysis Nonlinear Programming Singularity Theory Constrain Optimization Problem Dimensional Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L.V. Ahlfors and L. Sario,Riemann Surfaces (Princeton University Press, 1960).Google Scholar
  2. [2]
    E.L. Allgower and K. Georg, Predictor-corrector and simplicial methods for approximating fixed points and zero points of nonlinear mappings, in:Mathematical Programming, the State of the Art, eds. A. Bachem, M. Grötschel and B. Korte (Springer, 1983) pp. 15–56.Google Scholar
  3. [3]
    E.L. Allgower and K. Georg,Introduction to Numerical Continuation Methods (Springer, to appear).Google Scholar
  4. [4]
    E.L. Allgower and S. Gnutzmann, An algorithm for piecewise linear approximation of implicitly defined two-dimensional surfaces, SIAM J. Num. Anal. 24 (1987) 452–469.Google Scholar
  5. [5]
    E.L. Allgower and Ph.H. Schmidt, An algorithm for piecewise-linear approximation of an implicitly defined manifold, SIAM J. Num. Anal. 22 (1985) 322–346.Google Scholar
  6. [6]
    V.I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1983).Google Scholar
  7. [7]
    V.I. Arnold,Catastrophe Theory (Springer, 1984).Google Scholar
  8. [8]
    V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko,Singularities of Differentiable Maps I (Birkhäuser, Boston-Basel-Stuttgart, 1985).Google Scholar
  9. [9]
    J.-P. Aubin and F.H. Clarke, Multiplicateurs de Lagrange en optimization non convexe et applications, C.R. Acad. Sci. Paris 285, Série A (1977) 451–454.Google Scholar
  10. [10]
    J.-P. Aubin and I. Ekeland, Estimates of the duality gap in nonconvex optimization, Math. Oper. Res. 1 (1976) 225–245.Google Scholar
  11. [11]
    J.-P. Aubin and I. Ekeland,Applied Nonlinear Analysis (Wiley, 1984).Google Scholar
  12. [12]
    G. Auchmuty, Duality for non-convex variational principles, J. Differential Equations 50 (1983) 80–145.Google Scholar
  13. [13]
    G. Auchmuty, Duality algorithms for smooth unconstrained optimization, in:Proc. Seminar on Computational Solution of Nonlinear Systems of Equations (Colorado State University, July 18–29, 1988) Preprint (1988), to appear inLectures in Applied Mathematics.Google Scholar
  14. [14]
    B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer,Non-Linear Parametric Optimization (Akademie-Verlag, Berlin, 1982).Google Scholar
  15. [15]
    B. Bank and R. Mandel,Parametric Integer Optimization (Akademie-Verlag, Berlin 1988).Google Scholar
  16. [16]
    J.F. Bard, Convex two-level optimization, Math. Programming 40 (1988) 15–27.Google Scholar
  17. [17]
    W. Barth, C. Peters and A. Van de Ven,Compact Complex Surfaces (Springer, 1984).Google Scholar
  18. [18]
    G. Barthel, F. Hirzebruch and Th. Höfer,Geradenkonfigurationen und Algraische Flächen (Vieweg Verlag, Braunschweig-Wiesbaden, 1987).Google Scholar
  19. [19]
    J.H. Bigelow and N.Z. Shapiro, Implicit function theorems for mathematical programming and for systems of inequalities, Math. Programming 6 (1974) 141–156.Google Scholar
  20. [20]
    M.L. Bougeard, Morse theory for some lower-C 2 functions in finite dimensions, Math. Programming 41 (1988) 141–159.Google Scholar
  21. [21]
    D. Braess, Morse-Theorie für berandete Mannigfaltigkeiten, Math. Ann. 208 (1974) 133–148.Google Scholar
  22. [22]
    D. Braess,Nonlinear Approximation Theory (Springer, 1986).Google Scholar
  23. [23]
    J. Brink-Spalink and H.Th. Jongen, Morse theory for optimization problems with functions of maximum type, Meth. Oper. Res. 31 (1979) 121–134.Google Scholar
  24. [24]
    Th. Bröcker and L. Lander,Differentiable Germs and Catastrophes, London Math. Society Lecture Note Series, vol. 17 (Cambridge University Press, 1975).Google Scholar
  25. [25]
    B. Brosowski,Parametric Semi-Infinite Optimization (Peter Lang Verlag, Frankfurt a.M.-Bem-New York, 1982).Google Scholar
  26. [26]
    L.N. Bryzgalova, Singularities of the maximum of a parametrically dependent function, Funct. Anal. Appl. 11 (1977) no. 1, 49–51.Google Scholar
  27. [27]
    Y. Chabrillac and J.-P. Crouzeix, Definiteness and semidefiniteness of quadratic forms revisited, Linear Algebra Appl. 63 (1984) 283–292.Google Scholar
  28. [28]
    R.W. Chaney, Second-order necessary conditions in semismooth optimization, Math. Programming 40 (1988) 95–109.Google Scholar
  29. [29]
    F.H. Clarke, Generalized gradients and applications, Trans. Am. Math. Soc. 205 (1975) 247–262.Google Scholar
  30. [30]
    F.H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976) 167–174.Google Scholar
  31. [31]
    F.H. Clarke, On the inverse function theorem, Pacific J. Math. 64 (1976) 97–102.Google Scholar
  32. [32]
    F.H. Clarke, Optimal solutions to differential inclusions, J. Optim. Theory Appl. 19 (1976) 469–478.Google Scholar
  33. [33]
    F.H. Clarke, Generalized gradients of Lipschitz functionals, Advan. Math. 40 (1981) 52–67.Google Scholar
  34. [34]
    F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York-Chichester-Brisbane-Toronto-Singapore, 1983).Google Scholar
  35. [35]
    L. Collatz and W. Wetterling,Optimierungsaufgaben (Springer, 1971).Google Scholar
  36. [36]
    R.W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974) 189–211.Google Scholar
  37. [37]
    A.P. Dempster, D.B. Rubin and R.K. Tsutakawa, Estimation in covariance components models, J. Am. Statist. Ass. 76 (1981) 341–353.Google Scholar
  38. [38]
    V.F. Demyanov and A.M. Rubinov, On quasidifferentiable mappings, Math. Operationsforsch. u. Statist., Ser. Optimization 14 (1983) 3–21.Google Scholar
  39. [39]
    A. Dimca,Topics on Real and Complex Singularities (Vieweg, Braunschweig-Wiesbaden, 1987).Google Scholar
  40. [40]
    S. Dolecki and S. Rolewicz, Exact penalties for local minima, SIAM J. Control Optim. 17 (1979) 596–606.Google Scholar
  41. [41]
    B.C. Eaves and J.A. Yorke, Equivalence of surface density and average directional density, Math. Oper. Res. 9 (1984) 363–375.Google Scholar
  42. [42]
    E.R. Fadell and P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inventiones Math. 45 (1978) 139–174.Google Scholar
  43. [43]
    K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984) 519–537.Google Scholar
  44. [44]
    V.A. Fiacco,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming (Academic Press, New York, 1983).Google Scholar
  45. [45]
    A.V. Fiacco and J. Kyparisis, Sensitivity analysis in nonlinear programming under second order assumptions, in:Systems and Optimization, eds. A. Bagchi and H.Th. Jongen, Lecture Notes in Control and Information Sciences 66 (Springer, 1985) pp. 74–97.Google Scholar
  46. [46]
    A.V. Fiacco and J. Kyparisis, Computable bounds on parametric solutions of convex problems, Math. Programming 40 (1988) 213–221.Google Scholar
  47. [47]
    A.V. Fiacco and G.P. McCormick,Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, 1968).Google Scholar
  48. [48]
    F.R. Gantmacher,Matrizenrechnung, vol. 1 (VEB Deutscher Verlag der Wissenschaften, Berlin, 1970).Google Scholar
  49. [49]
    J. Gauvin, A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming, Math. Programming 12 (1977) 136–138.Google Scholar
  50. [50]
    C.G. Gibson, K. Wirthmüller, A.A. du Plessis and E.J.N. Looijenga,Topological Stability of Smooth Mappings, Lecture Notes in Mathematics 552 (Springer, 1976).Google Scholar
  51. [51]
    M. Golubitsky and V. Guillemin,Stable Mappings and Their Singularities (Springer, 1973).Google Scholar
  52. [52]
    M. Golubitsky and D.G. Schaeffer,Singularities and Groups in Bifurcation Theory, vol. 1 (Springer, 1985).Google Scholar
  53. [53]
    J. Guddat and F. Guerra Vazquez, Multiobjective optimization using pivoting and continuation methods, Preprint No. 143, Sektion Mathematik, Humboldt-Universität, East-Berlin (1987).Google Scholar
  54. [54]
    J. Guddat and H.Th. Jongen, Structural stability in nonlinear optimization, Optimization 18 (1987) 617–631.Google Scholar
  55. [55]
    J. Guddat, H.Th. Jongen and D. Nowack, Parametric optimization: pathfollowing with jumps, in:Approximation and Optimization, eds. A. Gómez, F. Guerra, M.A. Jiménez and G. López, Lecture Notes in Mathematics 1354 (Springer, 1988) 43–53.Google Scholar
  56. [56]
    J. Guddat, H.Th. Jongen and J. Rueckmann, On stability and stationary points in nonlinear optimization, J. Austral. Math. Soc. Series B 28 (1986) 36–56.Google Scholar
  57. [57]
    S.-Å. Gustafson and K.O. Kortanek, Semi-infinite programming and applications, in:Mathematical Programming, the State of the Art, eds. A. Bachem, M. Grötschel and B. Korte (Springer, 1984) pp. 132–157.Google Scholar
  58. [58]
    W.H. Hager, Lipschitz continuity for constrained processes, SIAM J. Control Optim. 17 (1979) 321–338.Google Scholar
  59. [59]
    S.-P. Han and O. Fujiwara, An inertia theorem for symmetric matrices and its applications to nonlinear programming. Linear Algebra Appl. 72 (1985) 47–109.Google Scholar
  60. [60]
    R.M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Am. J. Math. 102 (1980) 291–302.Google Scholar
  61. [61]
    D.A. Harville, Maximum likelihood approaches to variance component estimation and to related problems, J. Am. Statist. Assoc. 72 (1977) 320–340.Google Scholar
  62. [62]
    M. Hervé,Several Complex Variables, Local Theory (Oxford University Press, London, 1963).Google Scholar
  63. [63]
    R. Hettich and H.Th. Jongen, Semi-infinite programming: conditions of optimality and applications, in:Optimization Techniques, vol. 2, ed. J. Stoer, Lecture Notes in Control and Information Sciences 7 (Springer, 1978) pp. 1–11.Google Scholar
  64. [64]
    R. Hettich and P. Zencke,Numerische Methoden der Approximation und semi-infiniten Optimierung (Teubner Studienbücher, Stuttgart, 1982).Google Scholar
  65. [65]
    J.-B. Hiriart-Urruty, Gradients généralisés de fonctions marginales, SIAM J. Control Optim. 16 (1978) 301–316.Google Scholar
  66. [66]
    J.-B. Hiriart-Urruty, Lipschitzr-continuity of the approximate subdifferential of a convex function, Math. Scand. 47 (1980) 123–134.Google Scholar
  67. [67]
    H. Hironaka, Introduction to real-analytic sets and real-analytic maps, Preprint, University of Pisa (1973).Google Scholar
  68. [68]
    M.W. Hirsch,Differential Topology (Springer, 1976).Google Scholar
  69. [69]
    K. Jänich, Caustics and catastrophes, Math. Ann. 209 (1974) 161–180.Google Scholar
  70. [70]
    K. Jittorntrum, Accelerated convergence for the Powell/Hestenes multiplier method, Math. Programming 18 (1980) 197–214.Google Scholar
  71. [71]
    K. Jittorntrum, Solution point differentiability without strict complementarity in nonlinear programming, Math. Programming 21 (1984) 127–138.Google Scholar
  72. [72]
    H.Th. Jongen, Zur Geometrie endlichdimensionaler nichtkonvexer Optimierungsaufgaben, in:Numerische Methoden bei Optimierungsaufgaben 3, L. Collatz, G. Meinardus and W. Wetterling, eds., ISNM 36 (Birkhäuser, Basel-Stuttgart, 1977) pp. 111–136.Google Scholar
  73. [73]
    H.Th. Jongen, Parametric optimization: critical points and local minima, in:Proc. Seminar on Computational Solution of Nonlinear Systems of Equations, Colorado State University (July 18–29, 1988) Preprint No. 2, 1988, Lehrstuhl C für Mathematik (RWTH Aachen, West Germany, 1988) to appear in Lectures in Applied Mathematics.Google Scholar
  74. [74]
    H.Th. Jongen, P. Jonker and F. Twilt, On deformation in optimization, Meth. Oper. Res. 37 (1980) 171–184.Google Scholar
  75. [75]
    H.Th. Jongen, P. Jonker and F. Twilt, On one-parameter families of sets defined by (in)equality constraints, Nieuw Archief v. Wiskunde (3) XXX (1982) 307–322.Google Scholar
  76. [76]
    H.Th. Jongen, P. Jonker and F. Twilt,Nonlinear Optimization inn, vol. 1: Morse theory, Chebychev approximation (Peter Lang Verlag, Frankfurt a.M.-Bern-New York, 1983).Google Scholar
  77. [77]
    H.Th. Jongen, P. Jonker and F. Twilt,Nonlinear Optimization inn, vol. 2: Transversality, flows, parametric aspects (Peter Lang Verlag, Frankfurt a.M.-Bern-New York, 1986).Google Scholar
  78. [78]
    H.Th. Jongen, P. Jonker and F. Twilt, One-parameter families of optimization problems: equality constraints, J. Optim. Theory Appl. 48 (1986) 141–161.Google Scholar
  79. [79]
    H.Th. Jongen, P. Jonker and F. Twilt, Critical sets in parametric optimization, Math. Programming 34 (1986) 333–353.Google Scholar
  80. [80]
    H.Th. Jongen, P. Jonker and F. Twilt, Parametric optimization: the Kuhn-Tucker set, in:Parametric Optimization and Related Topics, J. Guddat, H.Th. Jongen, B. Kummer and F. Nožička, eds., (Akademie-Verlag, Berlin, 1987) pp. 196–208.Google Scholar
  81. [81]
    H.Th. Jongen, P. Jonker and F. Twilt, A note on Branin's method for finding the critical points of smooth functions,, pp. 209–218.Google Scholar
  82. [82]
    H.Th. Jongen, P. Jonker and F. Twilt, The continuous, desingularized Newton method for meromorphic functions, Acta Appl. Math. 13 (1988) 81–121.Google Scholar
  83. [83]
    H.Th. Jongen, D. Klatte and K. Tammer, Implicit functions and sensitivity of stationary points, Preprint No. 1, 1988, Lehrstuhl C für Mathematik (RWTH Aachen, West Germany, 1988) to appear in Math. Programming.Google Scholar
  84. [84]
    H.Th. Jongen, T. Moebert, J. Rueckmann and K. Tammer, On inertia and Schur complement in optimization, Linear Algebra Appl. 95 (1987) 97–109.Google Scholar
  85. [85]
    H.Th. Jongen, T. Moebert and K. Tammer, On iterated minimization in nonconvex optimization, Math. Oper. Res. 11 (1986) 679–691.Google Scholar
  86. [86]
    H.Th. Jongen and D. Pallaschke, On linearization and continuous selections of functions, Optimization 19 (1988) 343–353.Google Scholar
  87. [87]
    H.Th. Jongen and F. Twilt, On decomposition and structural stability in non-convex optimization, in:Numerische Methoden bei graphentheoretischen und kombinatorischen Problemen 2, L. Collatz, G. Meinardus and W. Wetterling, eds., ISNM 46 (Birkhäuser, Basel-Boston-Stuttgart, 1979) pp. 161–183.Google Scholar
  88. [88]
    H.Th. Jongen and G. Zwier, On the local structure of the feasible set in semi-infinite optimization, in:Parametric Optimization and Approximation, B. Brosowski and F. Deutsch, eds., ISNM 72 (Birkhäuser, Basel-Boston-Stuttgart, 1985) pp. 185–202.Google Scholar
  89. [89]
    H.Th. Jongen and G. Zwier, On regular semi-infinite optimization, in:Infinite Optimization E.J. Anderson and A.B. Philpott, eds., Lecture Notes in Econ. and Math. Systems 259 (Springer, 1985) pp. 53–64.Google Scholar
  90. [90]
    H. Kawasaki, An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems, Math. Programming 41 (1988) 73–96.Google Scholar
  91. [91]
    H. Kawasaki, The upper and lower second order directional derivatives of a sup-type function, Math. Programming 41 (1988) 327–339.Google Scholar
  92. [92]
    K.C. Kiwiel,Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics 1133 (Springer, 1985).Google Scholar
  93. [93]
    M. Kojima, On the homotopic approach to systems of equations with separable mappings, Math. Programming Study 7 (1978) 170–184.Google Scholar
  94. [94]
    M. Kojima, Strongly stable stationary solutions in nonlinear programs, in:Analysis and Computation of Fixed Points, S.M. Robinson, ed. (Academic Press, New York, 1980) pp. 93–138.Google Scholar
  95. [95]
    M. Kojima and R. Hirabayashi, Continuous deformations of nonlinear programs, Math. Programming Study 21 (1984) 150–198.Google Scholar
  96. [96]
    M. Kojima and R. Saigal, On the number of solutions to a class of complementary problems, Math. Programming 21 (1981) 190–203.Google Scholar
  97. [97]
    B. Kummer, The inverse of a Lipschitz function in ℝn: complete characterization by directional derivatives, Preprint, Humboldt-University, Berlin, Department of Mathematics, PSF 1297, Berlin 1086 (1988).Google Scholar
  98. [98]
    S.S. Kutaladze and A.M. Rubinov, Minkowski duality and its applications, Russian Math. Surveys 27 (1972) 137–191.Google Scholar
  99. [99]
    J. Kyparisis and A.V. Fiacco, Generalized convexity and concavity of the optimal value function in nonlinear programming, Math. Programming 39 (1987) 285–304.Google Scholar
  100. [100]
    L.A. Ljusternik and W.I. Sobolew,Elemente der Funktionalanalysis (Akademie-Verlag, Berlin 1960).Google Scholar
  101. [101]
    S. Lojasiewicz, Ensemble semi-analytiques, Preprint, IHES, Bures-sur-Yvette, France (1965).Google Scholar
  102. [102]
    Y.-C. Lu,Singularity Theory and an Introduction to Catastrophe Theory (Springer, 1976).Google Scholar
  103. [103]
    S. Lucidi, New results on a class of exact augmented Lagrangians, J. Optim. Theory Appl. 58 (1988) 259–282.Google Scholar
  104. [104]
    D.G. Luenberger,Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1973).Google Scholar
  105. [105]
    L.J. Mancini and G.P. McCormick, Bounding global minima, Math. Oper. Res. 1 (1976) 50–53.Google Scholar
  106. [106]
    L. Markus, Catastrophes and economic equilibria, in:Calculus of Variations and Control Theory, D.L. Russel, ed., Math. Res. Center, Publ. 36 (Academic Press, New York, 1976) pp. 73–91.Google Scholar
  107. [107]
    V.I. Matov, Topological classification of germs of functions of maximum- and minimax-type for families of functions in general position, Uspehi Mat. Nauk 37 (1982) 167–168.Google Scholar
  108. [108]
    T. Matsumoto, S. Shindoh and R. Hirabayashi, Local linearization of feasible sets, Preprint, Research Reports on Information Sciences, Series B, Operations Research, No. B-210, Tokyo Institute of Technology (1988) submitted to J. Math. Anal. Appl.Google Scholar
  109. [109]
    T. Matsumoto, S. Shindoh and R. Hirabayashi, A new characterization of Mangasarian-Fromovitz condition, Preprint, Research Reports on Information Sciences, Series B, Operations Research, No. B-214, Tokyo Institute of Technology (1988) submitted to SIAM J. Control Optim.Google Scholar
  110. [110]
    T. Matsumoto, S. Shindoh and R. Hirabayashi, 1-determinacy of feasible sets, Preprint, Research Reports on Information Sciences, Series B, Operations Research, No. B-215, Tokyo Institute of Technology (1988) submitted to J. Control Optimiz.Google Scholar
  111. [111]
    G.P. McCormick, Locating an isolated minimizer of a constrained nonconvex program, Math. Oper. Res. 5 (1980) 435–443.Google Scholar
  112. [112]
    G.P. McCormick,Nonlinear Programming: Theory, Algorithms, and Applications (Wiley, 1983).Google Scholar
  113. [113]
    R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15 (1977) 959–972.Google Scholar
  114. [114]
    R. Mifflin, An algorithm for constrained optimization with semismooth function, Math. Oper. Res. 2 (1977) 191–207.Google Scholar
  115. [115]
    D. Milman, Eine geometrische Ungleichung und ihre Anwendung, in:General Inequalities 2 Proc. 2nd Int. Conf., Oberwolfach, 1978 (Birkhäuser, Basel-Boston-Stuttgart, 1980) pp. 357–366.Google Scholar
  116. [116]
    J. Milnor,Morse theory, Annals of Mathematics Studies, No. 51 (Princeton University Press, 1963).Google Scholar
  117. [117]
    J. Milnor,Lectures on the h-Cobordism Theorem, Mathematical Notes 1 (Princeton University Press, 1965).Google Scholar
  118. [118]
    J.M. Ortega and W.C. Rheinboldt,Iterative Solutions of Nonlinear Equations in Several Variables (Academic Press, 1970).Google Scholar
  119. [119]
    D.V. Oullette, Schur complements and statistics, Linear Algebra Appl. 36 (1981) 187–295.Google Scholar
  120. [120]
    P.D. Panagiotopoulos,Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions (Birkhäuser, Boston-Basel-Stuttgart, 1985).Google Scholar
  121. [121]
    J.-P. Penot and M.L. Bougeard, Approximation and decomposition properties of some classes of locally d.c. functions, Math. Programming 41 (1988) 195–227.Google Scholar
  122. [122]
    A. Pommelet, Analyse convex et théorie de Morse, Dissertation, Université de Paris-Dauphine (1982).Google Scholar
  123. [123]
    A.B. Poore and C.A. Tiahrt, Bifurcation problems in nonlinear parametric programming, Math. Programming 39 (1987) 189–205.Google Scholar
  124. [124]
    P.H. Rabinowitz,Minimax Methods in Critical Point Theory with Applications to Differential Equations, AMS-Regional Conference Series in Mathematics 65 (American Mathematical Society, Providence, Rhode Island, 1986).Google Scholar
  125. [125]
    A. Reinoza, Solving generalized equations via homotopies, Math. Programming 31 (1985) 307–320.Google Scholar
  126. [126]
    J. Renegar, Rudiments of an averaging case complexity theory for piecewise-linear path following algorithms, Math. Programming 40 (1988) 113–163.Google Scholar
  127. [127]
    S.M. Robinson, Stability theory for systems of inequalities, Part. II: differentiable nonlinear systems, SIAM J. Numer. Anal. 13 (1976) 497–513.Google Scholar
  128. [128]
    S.M. Robinson, Generalized equations and their solutions, Part. I: basic theory, Math. Programming Study 10 (1979) 128–141.Google Scholar
  129. [129]
    S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980) 43–62.Google Scholar
  130. [130]
    S.M. Robinson, Generalized equations and their solutions, Part. II: applications to nonlinear programming, Math. Programming Study 19 (1982) 200–221.Google Scholar
  131. [131]
    S.M. Robinson, Generalized equations, in:Mathematical Programming, the State of the Art, A. Bachem, M. Grötschel and B. Korte, eds. (Springer, 1983) pp. 346–367.Google Scholar
  132. [132]
    S.M. Robinson, Local structure of feasible sets in nonlinear programming, Part I: regularity, in:Numerical Methods, V. Pereyra and A. Reinoza, eds., Lecture Notes in Mathematics 1005 (Springer, 1983) pp. 240–251.Google Scholar
  133. [133]
    R.T. Rockafellar, Level sets and continuity of conjugate convex functions, Trans. Am. Math. Soc. 123 (1966) 46–63.Google Scholar
  134. [134]
    R.T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Advan. Math. 15 (1975) 312–333.Google Scholar
  135. [135]
    R.T. Rockafellar, Augumented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976) 97–116.Google Scholar
  136. [136]
    Th. Rupp, Kontinuitätsmethoden zur Lösung einparametrischer semi-infiniter Optimierungsprobleme, Dissertation, Universität Trier, West Germany (1988).Google Scholar
  137. [137]
    S. Schecter, Structure of the first-order solution set for a class of nonlinear programs with parameters, Math. Programming 34 (1986) 84–110.Google Scholar
  138. [138]
    J. Semple and S. Zlobec, On the continuity of a Lagrangian multiplier function in input optimization, Math. Programming 34 (1986) 362–369.Google Scholar
  139. [139]
    D. Siersma, Singularities of functions on boundaries, corners, etc., Quarterly J. Math., Oxford Ser. (2) 32 (1981) 119–127.Google Scholar
  140. [140]
    J.E. Spingarn, On optimality conditions for structural families of nonlinear programming problems, Math. programming 22 (1982) 82–92.Google Scholar
  141. [141]
    S. Sternberg,Lectures on Differential Geometry (Prentice Hall, 1964).Google Scholar
  142. [142]
    J.-J. Strodiot and V.H. Nguyen, On the numerical treatment of the inclusion 0 ∈ ∂f(x), in:Topics in Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos and G. Strang, eds. (Birkhäuser, Basel-Boston-Berlin, 1988) pp. 267–294.Google Scholar
  143. [143]
    A. Tannenbaum and Y. Yomdim, Robotic manipulators and the geometry of real semialgebraic sets, IEEE J. Robotics and Automation RA-3, 4 (1987) 301–307.Google Scholar
  144. [144]
    R. Thom,Stabilité Structurelle et Morphogénèse: Essai d'une Théorie Générale des Modèles (W.A. Benjamin, Reading, MA, 1972).Google Scholar
  145. [145]
    R. Thom, Sur le cut-locus d'une variété plongée, J. Differential Geometry 6 (1972) 577–586.Google Scholar
  146. [146]
    R. Thom, La théorie des catastrophes: état présent et perspectives, in:Dynamical systems — Warwick 1974, A. Manning, ed., Lecture Notes in Mathematics 468 (Springer, 1975) pp. 366–372.Google Scholar
  147. [147]
    M.J. Todd, On triangulations for computing fixed points, Math. Programming 10 (1976) 322–346.Google Scholar
  148. [148]
    M.J. Todd, Exploiting structure in piecewise-linear homotopy algorithms for solving equations, Math. Programming 18 (1980) 233–247.Google Scholar
  149. [149]
    M.J. Todd, “Fat” triangulations, or solving certain nonconvex matrix optimization problems, Math. Programming 31 (1985) 123–136.Google Scholar
  150. [150]
    L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Am. Math. Soc. 15 (1986) 189–193.Google Scholar
  151. [151]
    C.T.C. Wall, Geometric properties of generic differentiable manifolds, in:Geometry and Topology, III Latin American School of Mathematics, J. Palis and M. da Carmo, eds., Lecture Notes in Mathematics 597 (Springer, 1977) pp. 707–774.Google Scholar
  152. [152]
    W. Wetterling, Definitheitsbedingungen für relative Extrema bei Optimierungs- und Approximationsaufgaben, Numerische Mathematik 15 (1970) 122–136.Google Scholar
  153. [153]
    Y. Yomdin, On the local structure of a generic central set, Compositio Math. 43 (1981) 225–238.Google Scholar
  154. [154]
    Y. Yomdin, On functions representable as a supremum of a family of smooth functions, SIAM J. Math. Anal. 14 (1983) 239–246.Google Scholar
  155. [155]
    Y. Yomdin, Some results on finite determinacy and stability not requiring the explicit use of smoothness, Proc. Symp. Pure Math. 40, Part 2 (1983) 667–674.Google Scholar
  156. [156]
    Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264 (1983) 495–515.Google Scholar
  157. [157]
    Y. Yomdin, The set of zeroes of an “almost polynomial” function, Proc. Am. Math. Soc. 90 (1984) 538–542.Google Scholar
  158. [158]
    Y. Yomdin, Maxima of smooth families III: Morse-Sard theorem, Preprint, Max-Planck-Institut für Mathematik, Bonn, West Germany (1984).Google Scholar
  159. [159]
    Y. Yomdin, On representability of convex functions as maxima of linear families, Preprint, Max-Planck-Institut für Mathematik, Bonn, West Germany (1984).Google Scholar
  160. [160]
    Y. Yomdin, Global bounds for the Betti numbers of regular fibers of differentiable mappings, Topology 24 (1985) 145–152.Google Scholar
  161. [161]
    Y. Yomdin, On functions representable as a supremum of a family of smooth functions II, SIAM J. Math. Anal. 17 (1986) 961–969.Google Scholar
  162. [162]
    Y. Yomdin, Approximational complexity of functions, in:Geometric Aspects of Functional Analysis, J. Lindenstrauss and V.D. Milman, eds., Lecture Notes in Mathematics 1317 (Springer, 1988) pp. 21–43.Google Scholar
  163. [163]
    Y. Yomdin, Metric semialgebraic geometry with applications in smooth analysis, Preprint (1988).Google Scholar
  164. [164]
    Y. Yomdin, Sard's theorem and its improved versions in numerical analysis, Preprint, Institute for Advanced Study, Princeton, New Jersey (1988).Google Scholar
  165. [165]
    J. Zowe, Nondifferentiable optimization — a motivation and a short introduction into the subgradient — and the bundle concept, in:Computational Mathematical Programming, K. Schittkowski, ed. (Springer, 1985) pp. 321–356.Google Scholar
  166. [166]
    J. Zowe, Optimization with nonsmooth data, OR Spektrum 9 (1987) 195–201.Google Scholar
  167. [167]
    G. Zwier, Structural analysis in semi-infinite programming, Dissertation, Twente University, The Netherlands (1987).Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1990

Authors and Affiliations

  • Hubertus Th. Jongen
    • 1
    • 2
  • Gerhard -W. Weber
    • 1
  1. 1.Lehrstuhl C für MathematikRWTH AachenAachenGermany
  2. 2.University of HamburgGermany

Personalised recommendations