Systems of logic whose truth-values form lattices

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

This is a preview of subscription content, log in to check access.


  1. [1]

    Birkhoff, Garrett: Lattice Theory. Amer. Math. Soc., Coll. Publ.25 (1948).

  2. [2]

    Łukasiewicz, Jan: O logiee trójwartościowej. Ruch filozofiezny,5, 169 (1920).

    Google Scholar 

  3. [3]

    Łukasiewicz, Jan a.Alfred Tarski: Untersuchungen über den Aussagenkalkül. C. r. Warsaw, Cl. III,23, 30 (1930).

    Google Scholar 

  4. [4]

    Post, Emil L.: Introduction to a general theory of elementary propositions. Amer. J. Math.43, 163 (1921).

    Google Scholar 

  5. [5]

    Rosser, J. B., a.A. R. Turquette: Axiom schemes form-valued propositional calculi. J. Symb. Log.10, 61 (1945).

    Google Scholar 

  6. [6]

    SŁupecki, Jerzy: Pełny trójwartościowy rachunek zdań. Ann. Univ. Mariae Curie-Skłodowska (Lublin),1, Nr, 3, sect. F 193 (1946).

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rose, A. Systems of logic whose truth-values form lattices. Math. Ann. 123, 152–165 (1951).

Download citation