Advertisement

Foundations of Physics

, Volume 24, Issue 12, pp 1589–1664 | Cite as

Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness

  • W. M. de Muynck
  • W. De Baere
  • H. Martens
Article

Abstract

The validity of the conclusion to the nonlocality of quantum mechanics, accepted widely today as the only reasonable solution to the EPR and Bell issues, is questioned and criticized. Arguments are presented which remove the compelling character of this conclusion and make clear that it is not the most obvious solution. Alternative solutions are developed which are free of the contradictions related with the nonlocality conclusion. Firstly, the dependence on the adopted interpretation is shown, with the conclusion that the alleged nonlocality property of the quantum formalism may have been reached on the basis of an interpretation that is unnecessarily restrictive. Secondly, by extending the conventional quantum formalism along the lines of Ludwig and Davies it is shown that the Bell problem may be related to complementarity rather than to nonlocality. Finally, the dependence on counterfactual reasoning is critically examined. It appears that locality on the quantum level may still be retained provided one accepts a newly proposed principle of nonreproducibility at the individual quantum level as an alternative of quantum nonlocality. It is concluded that the locality principle can retain its general validity, in full conformity with all experimental data.

Keywords

Quantum Mechanic Alternative Solution Quantum Level Retained General Validity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bohr, inAlbert Einstein, Philosopher-Scientist, P. A. Schilpp, ed. (Tudor, New York, 1951), p. 199.Google Scholar
  2. 2.
    A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 47, 460 (1981).Google Scholar
  3. 3.
    A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).Google Scholar
  4. 4.
    L. E. Ballentine,Rev. Mod. Phys. 42, 358 (1970).Google Scholar
  5. 5.
    E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976).Google Scholar
  6. 6.
    G. Ludwig,Foundations of Quantum Mechanics (Springer, Berlin, 1983), Vol. I.Google Scholar
  7. 7.
    H. Martens and W. de Muynck,Found. Phys. 20, 255, 357 (1990).Google Scholar
  8. 8.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  9. 9.
    N. Bohr,Phys. Rev. 48, 696 (1935).Google Scholar
  10. 10.
    A. Einstein,Dialectica 2, 320 (1948).Google Scholar
  11. 11.
    P. H. Eberhard, inQuantum Theory and Pictures of Reality, W. Schommers, ed. (Springer, Berlin, 1989), p. 49.Google Scholar
  12. 12.
    M. Jammer,The Philosophy of Quantum Mechanics (Wiley, New York, 1974), p. 197.Google Scholar
  13. 13.
    J. A. Wheeler, inQuantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983), p. 182.Google Scholar
  14. 14.
    W. M. de Muynck and J. P. H. W. van den Eijnde,Found. Phys. 14, 111 (1984).Google Scholar
  15. 15.
    W. M. de Muynck,Found. Phys. 14, 199 (1984).Google Scholar
  16. 16.
    W. M. de Muynck,Found. Phys. 16, 973 (1986).Google Scholar
  17. 17.
    H. Folse,The Philosophy of Niels Bohr (North-Holland, Amsterdam, 1985).Google Scholar
  18. 18.
    J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932); orMathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).Google Scholar
  19. 19.
    H. Everett, inThe Many-World Interpretation of Quantum Mechanics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, 1973), p. 3.Google Scholar
  20. 20.
    G. C. Ghirardi, A. Rimini, and T. Weber, and T. Weber,Phys. Rev. D 34, 470 (1986).Google Scholar
  21. 21.
    J. A. Wheeler, inProblems in the Foundations of Physics, G. Toraldo di Francia, ed. (North-Holland, Amsterdam, New York, Oxford, 1979), p. 423.Google Scholar
  22. 22.
    N. D. Mermin,Phys. Today, April 1985, p. 38.Google Scholar
  23. 23.
    A. Peres,Am. J. Phys. 46, 745 (1978).Google Scholar
  24. 24.
    E.g., G. Källėn, “Quantenelektrodynamik,” inHandbuch der Physik, Band V, Teil I,Prinzipien der Quantentheorie I (Springer, Berlin, 1958), p. 204; A. Messiah,Quantum Mechanics (North-Holland, Amsterdam, 1967), Ch. IV, Sec. 17.Google Scholar
  25. 25.
    W. Heisenberg,Die Physikalische Prinzipien der Quantentheorie (Bibliographisches Institut, Mannheim, 1958).Google Scholar
  26. 26.
    P. Busch,Found. Phys. 17, 905 (1987); W. M. de Muynck and H. Martens,Phys. Rev. 42, 5079 (1990); Y. Yamamoto, S. Machida, S. Saito, N. Imoto, T. Yanagawa, M. Kitagawa, and G. Björk, “Quantum mechanical limit in optical precision measurement and communication,” inProgress in Optics XXVIII, E. Wolf, ed. (Elsevier, Amsterdam, 1990), p. 87.Google Scholar
  27. 27.
    E. Wigner, inPerspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (MIT Press, Cambridge, Massachusetts, 1971), p. 25.Google Scholar
  28. 28.
    P. Mittelstaedt, A. Prieur, and R. Schieder,Found. Phys. 17, 891 (1987).Google Scholar
  29. 29.
    A. S. Holevo,Probabilistic and Statistical Aspects of Quantum Theory, (North-Holland, Amsterdam, 1982).Google Scholar
  30. 30.
    R. Loudon,Quantum Theory of Light, 2nd edn. (Clarendon, Oxford, 1983), Sec. 6.8.Google Scholar
  31. 31.
    P. Kruszynski and W. de Muynck,J. Math. Phys. 28, 1761 (1987).Google Scholar
  32. 32.
    E. Arthurs and M. Goodman,Phys. Rev. Lett. 60, 2447 (1988).Google Scholar
  33. 33.
    H. Martens and W. M. de Muynck,Phys. Lett. A 157, 441 (1991).Google Scholar
  34. 34.
    W. M. de Muynck and J. M. V. A. Koelman,Phys. Lett. A 98, 1 (1983).Google Scholar
  35. 35.
    H. Martens,The Uncertainly Principle, PhD thesis, Eindhoven University of Technology, 1991.Google Scholar
  36. 36.
    J. S. Bell,Physics (N.Y.) 1, 195 (1964).Google Scholar
  37. 37.
    A. Fine,J. Math. Phys. 23, 1306 (1982);Phys. Rev. Lett. 48, 291 (1982).Google Scholar
  38. 38.
    P. Rastall,Found. Phys. 13, 555 (1983).Google Scholar
  39. 39.
    W. M. de Muynck,Phys. Lett. A 114, 65 (1986).Google Scholar
  40. 40.
    J. F. Clauser and M. A. Horne,Phys. Rev. D 10, 526 (1974).Google Scholar
  41. 41.
    P. Busch and P. J. Lahti,Found. Phys. 19, 633 (1989).Google Scholar
  42. 42.
    W. M. de Muynck and H. Martens,Phys. Lett. A 142, 187 (1989).Google Scholar
  43. 43.
    H. P. Stapp,Phys. Rev. D 3, 1303 (1971); P. H. Eberhard,Nuovo Cimento B 38, 75 (1977).Google Scholar
  44. 44.
    W. Heisenberg,Physik und Philosophie (Verlag Ullstein, Frankfurt, 1959), p. 25.Google Scholar
  45. 45.
    K. R. Popper,Quantum Theory and the Schism in Physics (Rowman & Littlefield, Totowa, 1982).Google Scholar
  46. 46.
    B. d'Espagnat, inQuantum Theory and Pictures of Reality, W. Schommers, ed. (Springer, Berlin, 1989), p. 89.Google Scholar
  47. 47.
    P. Mittelstaedt, inProceedings, Symposium on the Foundations of Modern Physics 1987, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1987), p. 229.Google Scholar
  48. 48.
    P. Busch, P. J. Lahti, and P. Mittelstaedt,The Quantum Theory of Measurement (Springer, Berlin, 1991).Google Scholar
  49. 49.
    P. A. M. Dirac,The Principles of Quantum Mechanics, 4th rev. edn. (Clarendon, Oxford, 1967).Google Scholar
  50. 50.
    P. Busch, inProceedings, Symposium on the Foundations of Modern Physics, 1987, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1987), p. 105.Google Scholar
  51. 51.
    S. T. Ali and E. Prugovecki,J. Math. Phys. 18, 219 (1977).Google Scholar
  52. 52.
    G. Lochak, inQuantum Mechanics a Half Century Later, J. Leite Lopes and J. Paty, eds. (Reidel, Dordrecht, 1977), p. 245;Epistem. Lett. 6, 41 (1975);Found. Phys. 6, 173 (1976).Google Scholar
  53. 53.
    W. M. de Muynck and J. T. van Stekelenborg,Ann. Phys. (Leipzig) 7. Folge,45, 222 (1988).Google Scholar
  54. 54.
    P. H. Eberhard,Nuovo Cimento B 46, 392 (1978).Google Scholar
  55. 55.
    P. Suppes and M. Zanotti, inLogic and Probability in Quantum Mechanics, P. Suppes, ed. (Reidel, Dordrecht, 1976), p. 445.Google Scholar
  56. 56.
    D. Bohm,Phys. Rev. 85, 166, 180 (1952).Google Scholar
  57. 57.
    W. De Baere,Lett. Nuovo Cimento 39, 234 (1984),Lett. Nuovo Cimento 40, 488 (1984),Adv. Electronics and Electron Phys. 68, 245 (1986).Google Scholar
  58. 58.
    W. De Baere, inProceedings of the 2nd Gdansk Conference on the Foundations of Quantum Mechanics, J. Mizerskiet al., eds. (World Scientific, Singapore, 1990), p. 217.Google Scholar
  59. 59.
    S. Kochen and E. P. Specker,J. Math. Mech. 17, 59 (1967).Google Scholar
  60. 60.
    H. P. Stapp,Phys. Rev. D 3, 1303 (1971);Nuovo Cimento B 29, 270 (1975).Google Scholar
  61. 61.
    H. P. Stapp,Am. J. Phys. 40, 1098 (1972).Google Scholar
  62. 62.
    W. Heisenberg,Physics and Philosophy (Allen & Unwin, London, 1958).Google Scholar
  63. 63.
    C. D. Cantrell and M. O. Scully,Phys. Rep. 43, 499 (1978).Google Scholar
  64. 64.
    B. C. van Fraassen, inProceedings, Symposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1985), p. 113.Google Scholar
  65. 65.
    G. C. Ghirardi, and T. Weber,Lett. Nuovo Cimento 26, 599 (1979),Nuovo Cimento B 78, 9 (1983); G. C. Ghirardi, A. Rimini, and T. Weber,Lett. Nuovo Cimento 27, 293 (1980).Google Scholar
  66. 66.
    H. P. Stapp, inPhilosophical Implications of Quantum Theory, J. Cushing and E. McMullin, eds. (Notre Dame University Press, Notre Dame, 1989); also Lawrence Berkeley Laboratory Report LBL-24257, 1988.Google Scholar
  67. 67.
    W. M. de Muynck and W. De Baere,Found. Phys. Lett. 3, 325 (1990).Google Scholar
  68. 68.
    H. P. Stapp,Found. Phys. Lett. 3, 343 (1990).Google Scholar
  69. 69.
    W. De Baere, “Quantum nonreproducibility and the description of nature,” to be published.Google Scholar
  70. 70.
    L. de Broglie,La thermodynamique de la particule isolée (Gauthier-Villars, Paris, 1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • W. M. de Muynck
    • 1
  • W. De Baere
    • 2
    • 3
  • H. Martens
    • 1
  1. 1.Department of Theoretical PhysicsEindhoven University of TechnologyMB EindhovenThe Netherlands
  2. 2.Research associate N.F.W.O.Belgium
  3. 3.Laboratory for Theoretical PhysicsState University of GhentGhentBelgium

Personalised recommendations