Skip to main content
Log in

On the general covariance and strong equivalence principles in quantum general relativity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The various physical aspects of the general relativistic principles of covariance and strong equivalence are discussed, and their mathematical formulations are analyzed. All these aspects are shown to be present in classical general relativity, although no contemporary formulation of canonical or covariant quantum gravity has succeeded to incorporate them all. This has, in part, motivated the recent introduction of a geometro-stochastic framework for quantum general relativity, in which the classical frame bundles that underlie the formulation of parallel transport in classical general relativity are replaced by quantum frame bundles. It is shown that quantum frames can take over the role played by complete sets of observables in conventional quantum theory, so that they can mediate the natural transference of the general covariance and the strong equivalence principles from the classical to the quantum general relativistic regime. This results in a geometrostochastic mode of quantum propagation in general relativistic quantum bundles, which is mathematically implemented by path integration methods based on parallel transport along horizontal lifts of geodesics for the vacuum expectation values of a quantum gravitational field in a quantum spacetime supermanifold. The covariance features of this field are embedded in a quantum gravitational supergroup, which incorporates Poincaré as well as diffeomorphism invariance, and resolves the issue of time in quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Prugovečki,Quantum Geometry: A Framework for Quantum General Relativity (Kluwer, Dordrecht, 1992).

    Google Scholar 

  2. E. Prugovečki,Found. Phys. 22, 755 (1992).

    Google Scholar 

  3. A. Ashtekar and J. Stachel, eds.,Conceptual Problems in Quantum Gravity (Birkhäuser, Boston, 1991).

    Google Scholar 

  4. D. Howard and J. Stachel, eds.,Einstein and the History of General Relativity and Gravitation (Birkhäuser, Boston, 1989).

    Google Scholar 

  5. A. Einstein and M. Grossmann,Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Teubner, Leipzig, 1913). Reprinted inZ. Math. Phys. 62, 225 (1914).

    Google Scholar 

  6. H.-H. von Borzeszkowski and H.-J. Treder,The Meaning of Quantum Gravity (Kluwer, Dordrecht, 1988).

    Google Scholar 

  7. K. V. Laurikainen,Beyond the Atom: The Philosophical Thought of Wolfgang Pauli (Springer, Berlin, 1988).

    Google Scholar 

  8. N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  9. W. Heisenberg,Z. Phys. 110, 251 (1938).

    Google Scholar 

  10. M. Born,Rev. Mod. Phys. 21, 463 (1949).

    Google Scholar 

  11. B. Gerlach, D. Gromes, and J. Petzold,Z. Phys. 202, 401;204, 1 (1967).

    Google Scholar 

  12. S. S. Schweber,An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Company, Evanston, Illinois, 1961).

    Google Scholar 

  13. G. C. Hegerfeldt,Phys. Rev. D 10, 3320 (1974);Nucl. Phys. B (Proc. Suppl.) 6, 231 (1989).

    Google Scholar 

  14. A. S. Wightman,Aspects of Quantum Theory, A. Salam and E. P. Wigner, eds. (Cambridge University Press, Cambridge, 1972).

    Google Scholar 

  15. B. Thaller and S. Thaller,Nuovo Cimento A 82, 222 (1984).

    Google Scholar 

  16. J. A. Wheeler and W. H. Zurek, eds.,Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).

    Google Scholar 

  17. B. S. De Witt, inGravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York, 1962).

    Google Scholar 

  18. B. S. De Witt,Phys. Rep. 19, 295 (1975).

    Google Scholar 

  19. J. V. Narlikar and T. Padmanabhan,Gravity, Gauge Theories and Quantum Cosmology (Reidel, Dordrecht, 1986).

    Google Scholar 

  20. S. S. Schweber,Osiris 2, 265 (1986).

    Google Scholar 

  21. E. Prugovečki,Found. Phys. 22, 143 (1992).

    Google Scholar 

  22. J. Schwinger, ed.,Quantum Electrodynamics (Dover, New York, 1958).

    Google Scholar 

  23. J. Gleick,Genius: The Life and Science of Richard Feynman (Panthen Books, New York, 1992).

    Google Scholar 

  24. R. P. Feynmn, inSuperstrings: A Theory of Everything? P. C. W. Davies and J. Brown, eds. (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  25. N. Bohr,Collected Works, Vol. 6, L. Rosenfeldtet al., (North-Holland, Amsterdam), pp. 371–408.

  26. D. C. Cassidy,Uncertainty: The Life and Science of Werner Heisenberg (Freeman, New York, 1992).

    Google Scholar 

  27. W. Heisenberg,Z. Phys. 65, 4 (1930).

    Google Scholar 

  28. R. F. Snyder,Phys. Rev. 71, 38;72, 68 (1947).

    Google Scholar 

  29. L. Bombelli, L. Lee, D. Meyer, and R. D. Sorkin,Phys. Rev. Lett. 59, 521;60, 656 (1987).

    Google Scholar 

  30. D. Finkelstein,Int. J. Theor. Phys. 28, 441, 1081 (1989).

    Google Scholar 

  31. C. J. Isham, inProceedings of the Advanced Summer Institute on Physics, Geometry, and Topology, H. Lee, ed. (Plenum, New York, 1990).

    Google Scholar 

  32. C. A. Mead,Phys. Rev. B 135, 849 (1964).

    Google Scholar 

  33. E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime (Reidel, Dordrecht, 1984; reprinted with corrections, 1986).

    Google Scholar 

  34. E. Prugovečki,J. Math. Phys. 19, 2260 (1978).

    Google Scholar 

  35. E. Prugovečki,Phys. Rev. D 18, 3655 (1978).

    Google Scholar 

  36. E. Prugovečki,Found. Phys. Lett. 4, 129 (1991).

    Google Scholar 

  37. S. T. Ali and E. Prugovečki,Acta Appl. Math. 6, 1, 19, 47 (1986).

    Google Scholar 

  38. E. Prugovečki,Ann. Phys. (N.Y.) 110, 102 (1978).

    Google Scholar 

  39. E. Prugovečki,Nuovo Cimento A 61, 85 (1981).

    Google Scholar 

  40. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (Mc-Graw-Hill, New York, 1965).

    Google Scholar 

  41. M. Kac,Probability and Related Topics in the Physical Sciences (Interscience, New York, 1959).

    Google Scholar 

  42. E. Prugovečki,Quantum Mechanics in Hilbert Space, 2nd ed. (Academic Press, New York, 1981).

    Google Scholar 

  43. E. Prugovečki,Physica A 91, 202, 229 (1978).

    Google Scholar 

  44. J. R. Taylor,Scattering Theory (Wiley, New York, 1972).

    Google Scholar 

  45. A. Messiah,Quantum Mechanics, Vol. I (Wiley, New York, 1962).

    Google Scholar 

  46. R. E. Turner and R. F. Snider,Can. J. Phys. 58, 1171 (1980).

    Google Scholar 

  47. R. G. Newton,Found. Phys. 9, 929 (1979).

    Google Scholar 

  48. M. Born,Proc. R. Soc. London A 165, 291 (1938).

    Google Scholar 

  49. P. A. M. Dirac,Rev. Mod. Phys. 21, 392 (1949).

    Google Scholar 

  50. E. Prugovečki,Found. Phys. 24, 335 (1994).

    Google Scholar 

  51. N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov,General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1990).

    Google Scholar 

  52. J. Stachel, “What a physicist can learn from the history of Einstein's discovery of general relativity,” in theProceedings of the Fourth Marcel Grossmann Meeting on General Relativity and Gravitation, R. Ruffini ed. (Elsevier, Amsterdam, 1986).

    Google Scholar 

  53. R. P. Feynman, M. Kislinger, and F. Ravndal,Phys. Rev. D. 3, 706 (1971).

    Google Scholar 

  54. J. Norton, inMeasurement, Realism, and Objectivity, J. Forge, ed. (Reidel, Dordrecht, 1987).

    Google Scholar 

  55. A. Einstein,Ann. Phys. 49, 769 (1916); translated in English by W. Perrett and G. B. Jeffery as “The foundation of the general theory of relativity,” pp. 109–164 inThe principle of Relatvity (Methuen, London, 1923; reprinted by Dover, New York, 1952).

    Google Scholar 

  56. C. W. Misner, K. S. Thome, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  57. E. Kretschmann,Ann. Phys. 53, 575 (1917).

    Google Scholar 

  58. M. Friedman,Foundations of Space-Time Theories (Princeton University Press, Princeton, 1983).

    Google Scholar 

  59. A. Einstein,Relativity: the Special and the General Theory, 15 th edn. (Crown Publishers, New York, 1961).

    Google Scholar 

  60. M. Göckeler and T. Schücker,Differential Geometry, Gauge Theories, and Gravity (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  61. D. S. Freed, inInfinite-Dimensional Groups with Applications, V. Kac, ed. (Springer, New York, 1985)

    Google Scholar 

  62. A. Einstein, inAlbert Einstein: Philosopher Scientist, P. A. Schilpp, ed. (Harper & Row, New York, 1949).

    Google Scholar 

  63. A. Einstein inReadings on the Philosophy of Science, H. Feigl and M. Brodbeck, eds. (Appleton-Century-Crofts, New York, 1953).

    Google Scholar 

  64. F. W. Hehl, P. von der Heyde, and G. D. Kerlick,Rev. Mod. Phys. 48, 393 (1976).

    Google Scholar 

  65. W. Drechsler,Fortschr. Phys. 23, 449 (1984).

    Google Scholar 

  66. N. N. Bogolubov, A. A. Logunov, and I. T. TodorovIntroduction to Axiomatic Quantum Field Theory (Benjamin, Reading, Massachusetts, 1975).

    Google Scholar 

  67. F. A. Berezin,The Method of Second Quantization (Academic Press, New York, 1966).

    Google Scholar 

  68. L. Bracci and F. Strocchi,J. Math. Phys. 13, 1151 (1972);16, 2522 (1975).

    Google Scholar 

  69. J. Bognár,Indefinite Inner Product Spaces (Springer, Berlin, 1974).

    Google Scholar 

  70. E. T. Whittaker,A History of the Theory of Aether and Elasticity, rev. edn. (Thomas Nelson, London, 1951).

    Google Scholar 

  71. J. A. Wheeler, inProblems in the Foundations of Physics, G. Toraldo de Francia, ed. (North-Holland, Amsterdam, 1979).

    Google Scholar 

  72. L. Baulieu,Phys. Rep. 129, 1 (1985).

    Google Scholar 

  73. L. Baulieu and I. M. Singer,Nucl. Phys. B (Proc. Suppl.) 5, 12 (1988).

    Google Scholar 

  74. L. Schiff,Am. J. Phys. 28, 340 (1960).

    Google Scholar 

  75. A. P. Lightman and D. L. Lee,Phys. Rev. D 8, 364 (1973).

    Google Scholar 

  76. V. B. Braginsky and V. I. Panov,Zh. Eksp. Theor. Fiz. 61, 875 (1971).

    Google Scholar 

  77. J. Ehlers, inGeneral Relativity and Gravitation, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  78. S. S. Schweber,Rev. Mod. Phys. 58, 449 (1986).

    Google Scholar 

  79. I. M. Gel'fand and A. M. Yaglom,J. Math. Phys. 1, 48 (1960).

    Google Scholar 

  80. R. H. Cameron,J. Math. Phys. (MIT) 39, 126 (1960);J. Anal. Math. 10, 287 (1962/63).

    Google Scholar 

  81. L. S. Schulman,Techniques and Applications of Path Integration (Wiley, New York, 1981).

    Google Scholar 

  82. E. Prugovečki,Class. Quantum Grav. 4, 1659 (1987).

    Google Scholar 

  83. F. J. Dyson, inSome Strangeness in the Proportion, H. Woolfe, ed. (Addisson-Wesley, Reading, Massachusetts, 1980).

    Google Scholar 

  84. R. Omnès,Rev. Mod. Phys. 64, 339 (1992).

    Google Scholar 

  85. Y. Choquet-Bruhat and J. W. York, inGeneral Relativity and Gravitation, Vol. 1, A. Held, ed. (Plenum, New York, 1980).

    Google Scholar 

  86. S. W. Hawking and G. F. R. Ellis,The Large-Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).

    Google Scholar 

  87. R. J. Rivers,Path Integral Methods in Quantum Field Theory (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  88. D. P. Greenwood and E. Prugovečki,Found. Phys. 14, 883 (1984).

    Google Scholar 

  89. S. W. Hawking,Sci. Am. 236, 34 (1977).

    Google Scholar 

  90. L. de Broglie,Comp. Rend. 177, 506, 548, 630 (1923);Thèse de Doctorat (Masson et Cie., Paris, 1924).

    Google Scholar 

  91. L. de Broglie, inPerspectives in Quantum Theory, W. Yougrau and A. van der Merwe, eds. (Dover, New York, 1979).

    Google Scholar 

  92. S. Deser,Gen. Rel. Grav. 1, 9 (1970).

    Google Scholar 

  93. T. Kugo and I. Ojima,Prog. Theor. Phys. Suppl. 66, 1 (1979).

    Google Scholar 

  94. K. R. Popper,Quantum Theory and the Schism in Physics (Hutchinson, London, 1982).

    Google Scholar 

  95. R. P. Feynman,Science 153, 699 (1966).

    Google Scholar 

  96. W. Moore,Schrödinger: Life and Thought (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  97. M. Born,Physics in My Generation (Pergamon Press, London, 1956).

    Google Scholar 

  98. P. A. M. Dirac,Proc. R. Soc. London A 209, 251 (1951).

    Google Scholar 

  99. B. N. Kursunogly and E. P. Wigner, eds.,Reminiscences about a Great Physicist: Paul Adrien Maurice Dirac (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  100. E. Prugovečki,Principles of Quantum General Relativity (World Scientific, Singapore—to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prugovečki, E. On the general covariance and strong equivalence principles in quantum general relativity. Found Phys 24, 989–1076 (1994). https://doi.org/10.1007/BF02054648

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02054648

Keywords

Navigation