Differential enzymatic behaviour of single proximal segments of the superficial and juxtamedullary nephron

II. Lactic-, Isocitric-, Malic-, Glutamic- and Glucose-6-Phosphate dehydrogenases
  • U. Schmidt
  • U. C. Dubach


With oxidoreductases mediating several metabolic pathways, e.g. LDH (glycolysis), ICDH, MDH (tricarboxylic acid cycle), GLDH (aminoacid metabolism) and G-6-PDH (hexose monophosphate shunt) additional marked differences between the subcapsular (SCN) and juxtamedullary (JMN) nephron of rat kidney could be established using quantitative histochemical technique. The enzymatic differences between the two nephron types are mainly quantitative as could be shown within the logarithmic network. The intrarenal enzymatic heterogeneity seems to constitute a general concept.


Rat Nephron types Oxydoreductases Quantitative histochemistry 



lactic dehydrogenase EC


isocitric dehydrogenase EC


malate dehydrogenase EC


glucose-6-phosphate dehydrogenase EC


glutamic dehydrogenase EC


alkaline phosphatase EC

Na K ATPase

sodium and potassium activated adenosintriphosphatase EC


subcapsular nephron


juxtamedullary nephron




proximal convoluted portion


proximal straight portion


nicotinamide-adenine dinucleotide


nicotinamide-adenine dinucleotide phosphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baines, A. D., Baines, C. J., De Rouffignac, C.: Functional heterogeneity of nephrons I. Intraluminal flow velocities. Pflügers Arch. ges. Physiol.308, 244 (1969).CrossRefGoogle Scholar
  2. 2.
    — De Rouffignac, C.: Functional heterogeneity of nephrons II. Filtration rates, intraluminal flow velocities and fractional water reabsorption. Pflügers Arch. ges. Physiol.308, 260 (1969).CrossRefGoogle Scholar
  3. 3.
    Brown, J. J., Davies, D. L., Lever, A. F., Parker, R. A., Robertson, J. I. S.: The essay of renin in single glomeruli in the normal rabbit and the appearance of the juxtamedullar apparatus. J. Physiol. (Lond.)176, 418 (1965).Google Scholar
  4. 4.
    Burg, M. B., Orloff, J.: Control of fluid reabsorption in the renal proximal tubule. J. clin. Invest.47, 2016 (1968).PubMedGoogle Scholar
  5. 5.
    Deimling, v. O., Neuschafer-Rube, G., Noltenius, H.: Methodische Untersuchungen zur quantitativen und histologischen Verteilung der alkalischen Phosphatase in den Hauptstücken der Rattenniere. Histochemie8, 183 (1967).PubMedCrossRefGoogle Scholar
  6. 6.
    Delbrueck, A., Zebe, E., Buecher, Th.: über die Verteilungsmuster von Enzymen des Energie-liefernden Stoffwechsels in Flugmuskel, Sprungmuskel und Fettkörper von Locusta migratoria und ihre cytologische Zuordnung. Biochem. Z.331, 273 (1959).Google Scholar
  7. 7.
    Faarup, P.: The morphology of the juxtaglomerular apparatus. Proc. IInd Int. Congr. of Nephrology, p. 424. Amsterdam: Excerpta Medica Foundation 1963.Google Scholar
  8. 8.
    Gregoire, F., Gepts, W.: L'enzymologie du rein néphrotique étu diée par microdissection et histoenzymologie. Bull. Acad. Méd. Belg.6, 271 (1966).Google Scholar
  9. 9.
    Guettler, F., Clausen, J.: Cellular compartimentalization of lactate dehydrogenase isoenzymes. Enzymol. biol. clin.8, 456 (1967).Google Scholar
  10. 10.
    Hanssen, O. E.: The relationship between glomerulus filtration and lenght of the proximal convoluted tubules in mice. Acta path. microbiol. scand.53, 265 (1961).PubMedGoogle Scholar
  11. 11.
    Hoehmann, B., Zwiebel, R., Yamagata, A., Kinne, R.: Enzymaktivitäten im isolierten proximalen Tubulus der Kaninchenniere. Pflügers Arch. ges. Physiol.312, 110 (1969).CrossRefGoogle Scholar
  12. 12.
    Jacobsen, N., O.: The histochemical localization of lactic dehydrogenase isoenzymes in the rat nephron by means of an improved polyvinyl alcohol method. Histochemie20, 250 (1969).PubMedCrossRefGoogle Scholar
  13. 13.
    — JØrgensen, F., Thomsen, A. C.: On the localization of some phosphatases in three different segments of the proximal tubules in the rat kidney. J. Histochem. Cytochem.15, 456 (1967).Google Scholar
  14. 14.
    Jamison, R. L.: Micropuncture study of superficial and juxtamedullary nephrons in the rat. Amer. J. Physiol.218, 46 (1970).PubMedGoogle Scholar
  15. 15.
    Kissane, J. M.: Quantitative histochemistry of the kidney. I. Segmental distribution of enzymes in the renal proximal tubule of normal rats. J. Histochem. Cytochem.9, 578 (1961).PubMedGoogle Scholar
  16. 15a.
    — Heptinstall, R. H.: Experimental hydronephrosis: Morphological and enzymatic studies of renal tubules in ureteric obstruction and recovery in the rat. I. Alkaline and acid phosphatases. J. Histochem. Cytochem.13, 539 (1964).Google Scholar
  17. 15b.
    — —: Experimental hydronephrosis: Morphological and enzymatic studies of renal tubules in ureteric obstruction and recovery in the rat. II. Pentose phosphate pathway. J. Histochem. Cytocem.13, 547 (1964).Google Scholar
  18. 15 c.
    — Hoff, E.: Quantitative histochemistry of the kidney. II. Enzymatic activities in glomeruli and proximal tubules in aminonucleoside nephrosis in rats. J. Histochem. Cytochem.10, 259 (1962).Google Scholar
  19. 16.
    Kriz, W.: Der architektonische und funktionelle Aufbau der Rattenniere. Z. Zellforsch.82, 495 (1967).PubMedCrossRefGoogle Scholar
  20. 17.
    Love, R. M.: The freezing of animal tissue. In: Cryobiology. Ed. H. T. Meryman, p. 317. London-New York: Academic Press 1966.Google Scholar
  21. 18.
    — Structure of animal tissue after freezing. In: Recent Advances in Quantitative Histo- and Cytochemistry. Methods and Applications. Eds. U. C. Dubach and U. Schmidt, p. 18. Bern-Stuttgart: Huber 1971.Google Scholar
  22. 19.
    Lowry, O. H.: The chemical study of single neurons. Harvey Lect. Ser.58, 1 (1963).Google Scholar
  23. 20.
    — Passonneau, J. V.: Some recent refinements of quantitative histochemical analysis. In: Recent Advances in quantitative Histo- and Cytochemistry. Methods and Applications. Eds. U. C. Dubach and U. Schmidt, p. 63. Bern-Stuttgart: Huber 1971.Google Scholar
  24. 21.
    — Roberts, N. R., Lewis, Ch.: The quantitative histochemistry of the retina. J. biol. Chem.220, 879 (1956).PubMedGoogle Scholar
  25. 22.
    — — Schulz, D. W., Clow, J. E., Clark, J. R.: Quantitative histochemistry of retina. II. Enzymes of glucose metabolism. J. biol. Chem.236, 2813 (1961).PubMedGoogle Scholar
  26. 23.
    Mattenheimer, H.: Enzymology of kidney tissue. In: Enzymes in urine and kidney. Ed. U. C. Dubach, p. 119. Bem-Stuttgart: 1968.Google Scholar
  27. 24.
    Oliver, J.: Nephrons and kidneys. New York: Hoeber Medical Divisions, Harper & Row, Publishers 1968.Google Scholar
  28. 25.
    Pette, D.: Aktivitätsmuster und Ortsmuster von Enzymen des energieliefernden Stoffwechsels. In: Praktische Enzymologie. Ed. F. W. Schmidt, p. 15. Bern-Stuttgart: Huber 1968.Google Scholar
  29. 26.
    — Diskussionsbemerkung in Recent Advances of Quantitative Histo- and Cytochemistry. Eds. U. C. Dubach and U. Schmidt, p. 351. Bern-Stuttgart: Huber 1971.Google Scholar
  30. 27.
    Riecken, E. O., Goebell, H., Bode, Ch.: Untersuchungen zum Einflu\ von tiefen Temperaturen und Speicherdauer auf einige histochemisch nachweisbare Enzymaktivitäten in Leber, Niere und Jejunum der Ratte. Histochemie20, 225 (1969).PubMedCrossRefGoogle Scholar
  31. 28.
    Roberts, N. R., Coelho, R. R., Lowry, O. H.: Enzyme activities of giant squid axoplasm and axon sheath. J. Neurochem.3, 109 (1958).PubMedCrossRefGoogle Scholar
  32. 29.
    Schmidt, U., Dubach, U. C.: Differential enzymatic behaviour of single proximal segments of the superficial and juxtamedullary nephron. II. Alkaline phosphatase, (Mg++) ATPase and (Na+K+) ATPase. Z. ges. exp. Med.151, 93 (1969).CrossRefGoogle Scholar
  33. 30.
    — —: Quantitative Histochemie am Nephron. Oxydoreductasen und NaK ATPase. Progress in Histochemistry and Cytochemistry. Stuttgart: Fischer 1971 (im Druck).Google Scholar
  34. 30a.
    Sitte, H.: Beziehungen zwischen Zellstruktur und Stofftransport in der Niere. In: Sekretion und Exkretion. Ed. K. E. Wohlfarth-Bottermann, p. 343. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  35. 31.
    Sperber, J.: Studies on the mammalian kidney. Zool. Bidr. Uppsala22, 249 (1944).Google Scholar
  36. 32.
    Strominger, J. L., Lowry, O. H.: The quantitative histochemistry of brain. IV. lactic, malic and glutamic dehydrogenases. J. biol. Chem.213, 635 (1955).PubMedGoogle Scholar
  37. 33.
    Vilchez, J., Chalvardjian, A. M.: Activity of lactate and glucose-6-phosphate dehydrogenase in glomeruli and proximal tubules of magnesium-deficient rats. Proc. Soc. exp. Biol. (N.Y.)128, 167 (1968).Google Scholar
  38. 34.
    Wahl, M., Schnermann, J.: Microdissection study of the length of different tubular segments of rat superficial nephrons. Z. Anat. Entwickl.-Gesch.129, 128 (1969).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • U. Schmidt
    • 1
    • 2
  • U. C. Dubach
    • 1
    • 2
  1. 1.Enzyme LaboratoryMedical Policlinic of the University of BasleSwitzerland
  2. 2.Institute of PathologyUniversity of TübingenGermany

Personalised recommendations