Mathematische Annalen

, Volume 176, Issue 4, pp 273–301 | Cite as

Homotopy properties of semi-fredholm operators in Banach spaces

  • Gerhard Neubauer


Homotopy Property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arlt, D.: Zusammenziehbarkeit der allgemeinen linearen Gruppe des Raumesc 0 der Nullfolgen. Inventiones Math.1, 36–44 (1966).Google Scholar
  2. 2.
    Atiyah, M.:K-Theory. Lecture notes edited byD. W. Anderson. Fall 1964.Google Scholar
  3. 3.
    ——, andR. Bott: On the periodicity theorem for complex vector bundles. Acta Math.112, 229–247 (1964).Google Scholar
  4. 4.
    Berkson, E.: Some metrics on the subspaces of a Banach space. Pacific J. Math.13, 7–22 (1963).Google Scholar
  5. 5.
    Cordes, H. O., andJ. P. Labrousse: The invariance of the index in the metric space of closed operators. J. Math. Mech.12, 693–720 (1963).Google Scholar
  6. 6.
    Douady, A.: Un espace de Banach dont le groupe linéaire n'est pas connexe. Indagationes Math.68, 787–789 (1965).Google Scholar
  7. 7.
    Gohberg, I. C., andM. G. Kreín: The basic propositions on defect numbers, root numbers and indices of linear operators. AMS Transl. Ser. 213, 185–264 (1960); transl. from: Uspehi Mat. Nauk12, 2 (74), 43–118 (1957).Google Scholar
  8. 8.
    ——, andA. S. Markus: Dve teoremy o rastvore podprostranstv Banahova prostranstva. Uspehi Mat. Nauk14, 5 (89), 135–140 (1959).Google Scholar
  9. 9.
    Hirzebruch, F.: Neue topologische Methoden in der algebraischen Geometrie. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  10. 10.
    Jänich, K.: Vektorraumbündel und der Raum der Fredholm-Operatoren. Math. Ann.161, 129–142 (1965).Google Scholar
  11. 11.
    Kato, T.: Perturbation theory for linear operators. Berlin-Göttingen-Heidelberg: Springer 1966.Google Scholar
  12. 12.
    Kuiper, N. H.: The homotopy type of the unitary group of Hilbert space. Topology3, 19–30 (1965).Google Scholar
  13. 13.
    Neubauer, G.: Über den Index abgeschlossener Operatoren in Banachräumen. Math. Ann.160, 93–130 (1965).Google Scholar
  14. 14.
    —— Über den Index abgeschlossener Operatoren in Banachräumen II. Math. Ann.162, 92–119 (1965).Google Scholar
  15. 15.
    —— Der Homotopietyp der Automorphismengruppe in den Räumenl p undc 0. Math. Ann.174, 33–40 (1967).Google Scholar
  16. 16.
    -- On a class of sequence spaces with contractible linear group.Google Scholar
  17. 17.
    Palais, R. S.: On the homotopy type of certain groups of operators. Topology3, 271–279 (1965).Google Scholar
  18. 18.
    Schubert, H.: Topologie. Stuttgart: Teubner 1964.Google Scholar
  19. 19.
    Singer, I.: O banahovyh prostranstvah s simmetričnym bazisom. Rev. Math. Pures Appl.6, 159–166 (1961).Google Scholar
  20. 20.
    —— Some characterizations of symmetric bases in Banach spaces. Bull. Acad. Polon. Sci. Ser. Math.10, No. 4, 185–192 (1962).Google Scholar
  21. 21.
    Švarc, A. S.: The homotopic topology of Banach spaces. Sov. Math.5, 57–59 (1964); transl. from Dokl. Akad. Nauk.154, 61–63 (1964).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Gerhard Neubauer
    • 1
  1. 1.Institut für Angewandte Mathematik69 Heidelberg

Personalised recommendations