Mathematische Annalen

, Volume 163, Issue 2, pp 161–166 | Cite as

Every non-normable Frechet space is homeomorphic with all of its closed convex bodies

  • Czeslaw Bessaga
  • Victor Klee


Convex Body Frechet Space Closed Convex Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [0]
    Anderson, R. D.: Topological properties of the Hilbert cube and the infinite product of open intervals. Trans. Am. Math. Soc., to appear.Google Scholar
  2. [1]
    Bartle, R. G., andL. M. Graves: Mappings between function spaces. Trans. Am. Math. Soc.72, 400–413 (1952).Google Scholar
  3. [2]
    Bessaga, C., andV. Klee: Two topological properties of topological linear spaces. Israel J. Math.2, 211–220 (1964).Google Scholar
  4. [3]
    —— andA. Pełczyński: Some remarks on homeomorphisms ofF-spaces. Bull. Acad. Polon. Sci., Sér. sci. math. astr. et phys.10, 265–270 (1962).Google Scholar
  5. [4]
    Corson, H., andV. Klee: Topological classification of convex sets. Proc. Symp. Pure Math.7. — Convexity. Am. Math. Soc., Providence, R.I., 1963, 37–51.Google Scholar
  6. [5]
    Eidelheit, M.: Zur Theorie der Systeme linearer Gleichungen. Studia Math.6, 139–148 (1936).Google Scholar
  7. [6]
    Klee, V.: Convex bodies and periodic homeomorphisms in Hilbert space. Trans. Am. Math. Soc.74, 10–43 (1953).Google Scholar
  8. [7]
    —— Some topological properties of convex sets. Trans. Am. Math. Soc.78, 30–45 (1955).Google Scholar
  9. [8]
    —— Topological equivalence of a Banach space with its unit cell. Bull. Am. Math. Soc.67, 286–290 (1961).Google Scholar
  10. [9]
    Kolmogoroff, A.: Zur Normierbarkeit eines allgemeinen topologischen Raumes. Studia Math.5, 29–33 (1934).Google Scholar
  11. [10]
    Michael, E.: Convex structures and continuous selections. Canad. J. Math.11, 556–575 (1959).Google Scholar
  12. [11]
    Anderson, R. D.: Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Am. Math. Soc.72, to appear (1966).Google Scholar
  13. [12]
    Kadec, M. I.: Topological equivalence of all separable Banach spaces. (Russian.) Dokl. Akad. Nauk SSSR, to appear.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Czeslaw Bessaga
    • 1
  • Victor Klee
    • 2
  1. 1.WarsawPoland
  2. 2.Seattle

Personalised recommendations