Mathematische Annalen

, Volume 193, Issue 2, pp 114–120 | Cite as

The torsion form of submanifolds inE N

  • Dirk Ferus


Torsion Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Erbacher, J.: Isometric immersions of riemannian manifolds into space forms. Ph. D. Thesis. Brown University 1970. Providence, R. I.Google Scholar
  2. 2.
    Eisenhart, L.P.: A treatise on the differential geometry of curves and surfaces. New York: Dover 1960.Google Scholar
  3. 3.
    Hopf, H.: Lectures on differential geometry in the large. Mimeographed notes. Stanford University, California.Google Scholar
  4. 4.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. I. New York-London: Interscience Publ. 1963.Google Scholar
  5. 5.
    Ōtsuki, T.: A theory of riemannian submanifolds. Kōdai Math. Sem. Rep.20, 282–295 (1968).Google Scholar
  6. 6.
    Scherrer, W.: Eine Kennzeichnung der Kugel. Vierteljschr. Naturforsch. Ges. Zürich, Jahrg.85, 40–46 (1940).Google Scholar
  7. 7.
    Simon, U.: Probleme der lokalen und globalen mehrdimensionalen Differentialgeometrie. manuscripta math.2, 241–284 (1970).Google Scholar
  8. 8.
    Simons, J.: Minimal varieties in riemannian manifolds. Ann. Math.88, 62–105 (1968).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Dirk Ferus
    • 1
  1. 1.Department of MathematicsMass. Institute of TechnologyCambridgeUSA

Personalised recommendations