Mathematische Annalen

, Volume 193, Issue 2, pp 114–120 | Cite as

The torsion form of submanifolds inE N

  • Dirk Ferus
Article

Keywords

Torsion Form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erbacher, J.: Isometric immersions of riemannian manifolds into space forms. Ph. D. Thesis. Brown University 1970. Providence, R. I.Google Scholar
  2. 2.
    Eisenhart, L.P.: A treatise on the differential geometry of curves and surfaces. New York: Dover 1960.Google Scholar
  3. 3.
    Hopf, H.: Lectures on differential geometry in the large. Mimeographed notes. Stanford University, California.Google Scholar
  4. 4.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. I. New York-London: Interscience Publ. 1963.Google Scholar
  5. 5.
    Ōtsuki, T.: A theory of riemannian submanifolds. Kōdai Math. Sem. Rep.20, 282–295 (1968).Google Scholar
  6. 6.
    Scherrer, W.: Eine Kennzeichnung der Kugel. Vierteljschr. Naturforsch. Ges. Zürich, Jahrg.85, 40–46 (1940).Google Scholar
  7. 7.
    Simon, U.: Probleme der lokalen und globalen mehrdimensionalen Differentialgeometrie. manuscripta math.2, 241–284 (1970).Google Scholar
  8. 8.
    Simons, J.: Minimal varieties in riemannian manifolds. Ann. Math.88, 62–105 (1968).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Dirk Ferus
    • 1
  1. 1.Department of MathematicsMass. Institute of TechnologyCambridgeUSA

Personalised recommendations