Mathematische Annalen

, Volume 192, Issue 1, pp 57–60 | Cite as

On Toeplitz operators inH+C

  • Franklin T. Iha
  • Matthew C. Y. Lee


Toeplitz Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeBranges, L., Rounyak, J.: The existence of invariant subspaces. Bull. Am. Math. Soc.70, 718–721 (1964) and71, 396 (1965).Google Scholar
  2. 2.
    Coburn, L. A.: Weyl's theorem for non-normal operators. Mich. Math. J.13, 285–288 (1966).Google Scholar
  3. 3.
    Douglas, G.: Toeplitz and Wiener-Hopf oprators inH +C. Bull. Amer. Math. Soc.74, 895–899 (1968).Google Scholar
  4. 4.
    Helson, H., Sarason, D.: Past and Future. Math. Scand.21, 5–16 (1967).Google Scholar
  5. 5.
    Hoffman, K.: Banach space of analytic functions. Englewood Cliffs, N. J.: Prentice-Hall 1962.Google Scholar
  6. 6.
    Lee, M., Sarason, D.: The spectra of some Toeplitz operators. J. Math. Anal. Appl. (to appear).Google Scholar
  7. 7.
    Palais, R.: Seminar on the Atiyah-Singer index theorem. London: Princeton Univ. Press 1965.Google Scholar
  8. 8.
    Rabindranathan, M.: On the inversion of Toeplitz operators. J. Math. and Mech.19, 195–206 (1969).Google Scholar
  9. 9.
    Richart, C. E.: General theory of Banach algebras. Princeton: Van Nostrand 1960.Google Scholar
  10. 10.
    Stampfli, J. G.: On hyponormal and Toeplitz operators. Math. Ann.193, 328–336 (1969).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Franklin T. Iha
    • 1
  • Matthew C. Y. Lee
    • 1
  1. 1.Department of MathematicsUniversity of HawaiiHonoluluUSA

Personalised recommendations