Mycopathologia et mycologia applicata

, Volume 54, Issue 3, pp 369–375 | Cite as

Physiology of spore germination in cephalosporium acremonium

  • Claude H. NashIII
  • Richard L. Pieper


Conidia ofC. acremonium require an exogenous supply of carbon, nitrogen, magnesium, and phosphate for swelling and germ tube formation. Germination is stimulated by supplementing the medium with sulfate. Maximum frequency of germination occurs at a temperature of 27° to 32°C and a pH of 8.0. Conidia swell at pH 4.0 to 5.5 but do not form germ tubes. Conidia allowed to swell at pH 5.5 initiate germ tube formation immediately when the pH is adjusted to 7.5. Under optimal conditions, over 95 percent of the spore population formed germ tubes by 13 hours.


Nitrogen Phosphate Sulfate Magnesium Initiate Germ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J. G. & J. E. Smith (1972) The effects of elevated temperature on spore swelling and germination in Aspergillus niger. Can. J. Microbiol. 18: 289–297.PubMedGoogle Scholar
  2. 2.
    Badger, M. A. (1965) Influence of relative humidity on fungi causing crown rot of boxed bananas. Phytopath. 55: 688–692.Google Scholar
  3. 3.
    Cappellini, R. A. & J. L. Peterson (1971) pH, nutrients and macrospore germination in Gibberella zeae. Mycologia. 63: 641–643.PubMedGoogle Scholar
  4. 4.
    Gottlieb, D. & R. K. Tripathi (1968) The physiology of swelling phase of spore germination in Penicillium atrovenetum. Mycologia. 60: 571–590.Google Scholar
  5. 5.
    Griffin, G. J. (1970) Exogenous carbon and nitrogen requirements for chlamydospores germination by Fusarium solani: dependence on spore density. Can. J. Microbiol. 16: 1366–1368.PubMedGoogle Scholar
  6. 6.
    Mandels, G. R. & R. T. Darby (1953) A rapid cell volume assay for fungi toxicity using fungus spores. J. Bacter. 65: 16–26.Google Scholar
  7. 7.
    Marchant, R. & M. F. White (1967) The carbon metabolism and swelling of Fusarium culmorum conidia. J. Gen. Microbiol. 48: 65–77.Google Scholar
  8. 8.
    Martin, J. F. & G. Nicolas (1970) Physiology of spore germination in Penicillium notatum and Trichoderma lignorum. Trans. Br. Mycol. Soc. 55: 141–148.Google Scholar
  9. 9.
    Mozumder, B. K. G., N. E. Caroselli & L. S. Albert (1970) Influence of water activity, temperature and their interaction on germination of Verticillium albo-atrum conidia. Plant Physiol. 46: 347–349.Google Scholar
  10. 10.
    Nash, C. H. & F. M. Huber (1971) Antibiotic synthesis and morphological differentiation of Cephalosporium acremonium. Appl. Microbiol. 22: 6–10.PubMedGoogle Scholar
  11. 11.
    Vakil, J. R., M. R. R. Rao & P. K. Bhattachargyo (1961) Effect of Co2 on the germination of conidiospores of Aspergillus niger. Arch. Mikrobiol. 39: 53–57.PubMedGoogle Scholar
  12. 12.
    Yanagita, T. (1957) Biochemical aspects on the germination of conidiospores of Aspergillus niger. Arch. Mikrobiol. 26: 329–344.PubMedGoogle Scholar

Copyright information

© Dr. W. Junk B.V. 1974

Authors and Affiliations

  • Claude H. NashIII
  • Richard L. Pieper
    • 1
  1. 1.Antibiotic Manufacturing and Development DivisionEli Lilly and CompanyIndianapolis

Personalised recommendations