Unterschiedliche Indicatorverteilung im Herzmuskel bei der Extracellulärraumbestimmung in vitro und in vivo

  • Klaus Lossnitzer
Article

Zusammenfassung

Unter exakt festgelegten Bedingungen werden in vitro- und in vivo-EZR-Messungen nach dem Indicatorverdünnungsprinzip im linken Ventrikel von Hamsterherzen durchgeführt. Außerdem wird die Indicatorverteilung im Gewebe untersucht. Trotz nahezu übereinstimmender EZR-Größen in vitro und in vivo ergeben sich bei der Indicatorverteilung deutliche Unterschiede zwischen den beiden Methoden. Histologische Untersuchungen, Beobachtungen mit dem bloßen Auge und in der Literatur beschriebene Phänomene werden zur Erklärung der unterschiedlichen Indicatorverteilung herangezogen. Es drängt sich der Schluß auf, daß das mit dem in vivo-Ergebnis fast gleichlautende in vitro-Ergebnis des myokardialen EZR ein Artefakt ist, das nicht in jedem Fall in vivo-Verhältnisse widerspiegeln kann. Beweisende Untersuchungen dazu stehen noch aus.

Schlüsselwörter

Hamster Herzmuskel Extracellulärraum in vivo in vitro Inulin-C14 Indicatorverteilung 

Differences of indicator distribution in heart muscle between the in vitro- and in vivo- methods used for extracellular space determinations

Summary

In the left ventricles of hamster hearts extracellular space has been measured under very distinct and reproducible conditions by both an in vitro- and in vivo-indicator dilution technique. In addition, the indicator distribution in the tissue has been determined. Despite nearly identical results of measurements of the extracellular space in vitro and in vivo indicator distributions in the tissues differed widely when the in vitro-technique was opposed to the in vivo-method. This has raised serious doubts as to the value of the in vitro-technique to resemble various in vivo conditions. Obviously, a fruitful area of explorations is provided by the many basic problems to be resolved in this subject.

Key-words

Hamster Myocardium Extracellular space in vivo in vitro Inulin-C14 Indicator distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Albert, S. N., Albert, C. A., Hirsch, E. F.: Selenate as a substitute for sulfate in the measurement of extracellular fluid volume. J. nucl. Med.7, 290–303 (1966).PubMedGoogle Scholar
  2. 2.
    Barclay, J. A., Hamley, E. J., Houghton, H.: Electrolyte content of rat heart atria and ventricles. Circulat. Res.8, 1264–1267 (1960).PubMedGoogle Scholar
  3. 3.
    Barr, L., Malvin, R. L.: Estimation of extracellular spaces of smooth muscle using different-sized molecules. Amer. J. Physiol.208, 1042–1045 (1965).PubMedGoogle Scholar
  4. 4.
    Barry, A., Patten, B. M.: The structure of the adult heart. In: Gould, S. E.. Pathology of the Heart; 2nd Ed. Springfield (Ill.): Thomas 1960.Google Scholar
  5. 5.
    Bozler, E.: Determination of extracellular space in amphibian muscle. J. gen. Physiol.50, 1459–1465 (1967).PubMedCrossRefGoogle Scholar
  6. 6.
    Chow, S. Y., Jee, W. S., Taylor, G. N., Woodbury, D. M.: Radioautographic studies of inulin, sulfate and chloride in rat and guinea pig thyroid glands. Endocrinology77, 818–824 (1965).PubMedCrossRefGoogle Scholar
  7. 7.
    Diehl, J. F., Bissett, J. K.: Inulin and sucrose distribution in tissues of vitamin E-deficient and control rabbits. Proc. Soc. exp. Biol. (N.Y.)112, 173–176 (1963).Google Scholar
  8. 8.
    Fulton, J. F.: A Textbook of Physiology, originally by William H. Howell, 16th Ed. Philadelphia-London: Saunders 1950.Google Scholar
  9. 9.
    Grossman, A., Furchgott, R. F.: The effects of external calcium concentration on the distribution and exchange of calcium in resting and beating guinea-pig auricles. J. Pharmacol. exp. Ther.143, 107–119 (1964).PubMedGoogle Scholar
  10. 10.
    Hercus, V. M., McDowall, R. J. S., Mendel, D.: Sodium exchanges in cardiac muscle. J. Physiol. (Lond.)129, 177–183 (1955).Google Scholar
  11. 11.
    Hochrein, H., Reinert, M., Kriegsmann, B.: Der Extracellulärraum des Herz- und Skeletmuskels. Z. ges. exp. Med.139, 79–93 (1965).PubMedCrossRefGoogle Scholar
  12. 12.
    Kochemasova, N. G.: Determination of the extracellular space in various tissues by the volume of inulin distribution. Fiziol Zh (Kiev)11, 129–131 (1965).Google Scholar
  13. 13.
    KruhØffer, P.: Inulin as an indicator for extracellular space. Acta physiol. scand.11, 16–35 (1945).Google Scholar
  14. 14.
    Lamb, J. F.: The chloride content of rat auricle. J. Physiol. (Lond.)157, 415–425 (1961).Google Scholar
  15. 15.
    Long, C.: Biochemists' Handbook. Princeton-New Jersey-Toronto-New York-London: van Norstrand 1961.Google Scholar
  16. 16.
    Loßnitzer, K., Kelley, T. F.: Distribution of inulin-carboxyl-C14 in heart and skeletal muscle with respect to in vivo and in vitro extracellular space determinations. Experientia (Basel)24, 126–127 (1968).Google Scholar
  17. 17.
    Lüllmann, H.: Zur Methodik der Extrazellulärraum-Bestimmung am Meerschweinchenherzen mit Inulin. Med. exp. (Basel)9, 13–16 (1963).CrossRefGoogle Scholar
  18. 18.
    Norman, A., Rondell, P. A., Bohr, D. F.: Determinations of extracellular fluid space from small samples of tissue. Amer. J. clin. Path.32, 465–467 (1959).Google Scholar
  19. 19.
    Ogston, A. G., Phelps, C. F.: The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem. J.78, 827–833 (1960).Google Scholar
  20. 20.
    Page, E.: Cat heart muscle in vitro. III. The extracellular space. J. gen. Physiol.46, 201–213 (1962).PubMedCrossRefGoogle Scholar
  21. 21.
    —, Salomon, A. K.: Cat heart muscle in vitro. I. Cell volumes and intracellular concentrations in papillary muscle. J. gen. Physiol.44, 327–344 (1960).PubMedCrossRefGoogle Scholar
  22. 22.
    Pittman, J. A., Debons, A. F.: Thyroidal extracellular fluid compartments. Amer. J. Physiol.210, 399–403 (1966).PubMedGoogle Scholar
  23. 23.
    Schafer, D. E., Johnson, J. A.: Permeability of mammalian heart capillaries to sucrose and inulin. Amer. J. Physiol.206, 985–991 (1964).PubMedGoogle Scholar
  24. 24.
    Spach, C.: Determination of inulin. Application to the measurement of the inulin space of the rat and that of rat heart in vivo. Arch. Sci. physiol.19, 359–368 (1965).Google Scholar
  25. 25.
    Taketa, S. T., Alexander, C. G., Feigen, G. A.: Effect of nitrate ion on the distribution of sucrose in the rat's ventricle. Nature (Lond.)187, 419–420 (1960).CrossRefGoogle Scholar
  26. 26.
    van Harreveld, A.: Brain Tissue Electrolytes. Molecular Biology and Medicine Series. Washington: Butterworths 1966.Google Scholar
  27. 27.
    van B. Robertson, W., Peyser, P.: Estimates of extracellular fluid volume of myocardium. Amer. J. Physiol.184, 171–174 (1956).Google Scholar
  28. 28.
    Zsebök, Z. B., Petrányi, G. jr.: über die Bedeutung der quantitativen extrazellulären Wasserraumveränderungen bei den Störungen des Wasserumsatzes im „intestinalen Strahlentod“. Strahlentherapie123, 420–428 (1964).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Klaus Lossnitzer
    • 1
  1. 1.Medizinisch-Naturwissenschaftliche HochschuleSektion Cardiologie und Angiologie des Zentrums für Innere Medizin und Kinderheilkunde der Universität UlmDeutschland

Personalised recommendations