Skip to main content

Advertisement

Log in

Magnetization transfer imaging of multiple sclerosis

  • Workshop “New MR Techniques In Clinical Neurology”
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

Abstract

While conventional magnetic resonance imaging (MRI) measures signal primarily from the hydrogen nuclei of water, magnetization transfer (MT) MRI indirectly detects macromolecular associated hydrogen nuclei via their magnetic interaction with the observable water. In the normal adult CNS, white matter exhibits the largest MT effect due to the macromolecular content of the highly structured and lipid rich myelin. Pathologies which alter the structural integrity and the relative macromolecular-water composition, such as multiple sclerosis (MS), therefore show abnormal MT. Conventional MRI, which has a high MS lesion detection sensitivity but poor specificity in terms of differentiating the pathological state of a plaque, can thus be supplemented by MT to provide more specific information on the extent of demyelination and axonal loss. In this paper we review the basic concepts of MT imaging and its role in MS lesion characterization.

Sommario

La risonanza magnetica per immagini (RMI) convenzionale fornisce informazioni sulla base del segnale derivante dai nuclei di idrogeno dell'acqua. Al contrario lamagnetization transfer (MT) RMI misura il segnale di nuclei dell'idrogeno associati a macromolecole tramite la loro interazione con l'acqua. Nel sistema nervoso centrale di un soggetto adulto normale, la sostanza bianca evidenzia il maggiore effetto di MT a causa dell'alto contenuto di macromolecole presente nella struttura complessa e ricca in lipidi della mielina.

Condizioni patologiche in cui è alterata l'integrità e la composizione del binomio acqua-macromolecole mostrano un'alterata MT. Un valido esempio è rappresentato dalla sclerosi multipla, condizione patologica in cui la RMI convenzionale ha una alta sensitività per la individuazione della lesione, ma una bassa specificità nel differenziare lo stato patologico della placca. Al contrario, l'uso della MT RMI può fornire informazioni più specifiche riguardo il grado di demielinizzazione e perdita assonale. In questa review verranno trattati i concetti base della MT ed il suo ruolo nella caratterizzazione delle lesioni cerebrali da sclerosi multipla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold DL, Matthews PM, Francis GS, O'Connor J, Antel JP.Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann. Neurol., 1992; 31(3): 235–41.

    Article  PubMed  Google Scholar 

  2. Ceckler TL, Wolff SD, Simon SA, Yip V, Balaban RS.Dynamic and chemical factors affecting water proton relaxation by macromolecules. J. Magn Reson, 1992; 98: 637–645.

    Google Scholar 

  3. Dousset V.Magnetization transfer imaging in vivo study of normal brain tissues and characterization of multiple sclerosis and experimental allergic encephalomyelitis lesions [letter]. J. Neuroradiol., 1993; 20(4): 297.

    PubMed  Google Scholar 

  4. Dousset V, Grossman RI, Ramer KN, et al.Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology, 1992; 182(2): 483–91.

    PubMed  Google Scholar 

  5. Dousset V, Grossman RJ, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA.Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology, 1992; 182: 483–491.

    PubMed  Google Scholar 

  6. Edelman RR, Ahn SS, Chien D, et al.Improved time-of-flight MR angiography of the brain with magnetization transfer contrast. Radiology, 1992; 184(2): 395–9.

    PubMed  Google Scholar 

  7. Edzes HT, Samulski ED.The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: hydrated collagen and muscle. J Magn Reson, 1978; 31(2): 207–229.

    Google Scholar 

  8. Elster AD, Mathews VP, King JC, Hamilton CA.Improved detection of gadolinium enhancement using magnetization transfer imaging. Neuroimaging Clin N. Am, 1994; 4(1): 185–92.

    PubMed  Google Scholar 

  9. Eng J, Ceckler TI, Balaban RS.Quantitative 1 H magnetization transfer imaging in vivo. Magn Reson Med, 1991; 17(2): 304–314.

    PubMed  Google Scholar 

  10. Fralix TA, Ceckler TL, Wolff SD, Simon SA, Balaban RS.Lipid bilayer and water proton magnetization transfer: Effect of cholesterol. Magn Reson Med, 1991; 18(2): 214–223.

    PubMed  Google Scholar 

  11. Fung B.Nuclear magnetic resonance study of water interactions with proteins, biomolecules, membranes, and tissues. In L. Packer, editor, Methods in Ensymology, volume 127. Academic Press, San Diego, 1986.

    Google Scholar 

  12. Gass A, Barker GJ, Kidd D, et al.Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann. Neurol, 1994; 36(1): 62–7.

    Article  PubMed  Google Scholar 

  13. Grad J, Bryant RG.Nuclear magnetic cross-relaxation spectroscopy. J Magn Reson, 1990; 90: 1–8.

    Google Scholar 

  14. Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ.Quantitative interpretation of magnetization transfer. Magn Reson Med, 1993; 29(6): 759–66.

    PubMed  Google Scholar 

  15. Hiehle jr JF, Lenkinski RE, Grossman RI, et al.Correlation of spectroscopy and magnetization transfer imaging in the evaluation of demyelinating lesions and normal appearing white matter in multiple sclerosis. Magn Reson Med, 1994; 32(3): 285–93.

    PubMed  Google Scholar 

  16. Hu BS, Conolly SM, Wright GA, Nishimura DG, Macovski A.Pulsed saturation transfer contrast. Magn Reson Med, 1992; 26(2): 231–240.

    PubMed  Google Scholar 

  17. Kimura H, Lenkinski RE, Grossman RI, Gonzalez-Scarano F, Cohen JA.Proton MR spectroscopy in multiple sclerosis: Correlative study with magnetization transfer imaging. In Second Meeting of the Society of Magnetic Resonance, page 170, San Francisco, 1994.

  18. Koenig SH.Cholesterol of myelin is the determinant of grey-white contrast in MRI of brain. Magn Reson Med, 1991; 20(2): 285–291.

    PubMed  Google Scholar 

  19. Koenig SH, Brown RD, Spiller M, Lundbom N.Relaxometry of brain: Why white matter appears bright in MRI. Magn Reson Med, 1990; 14(3): 482–495.

    PubMed  Google Scholar 

  20. Kucharczyk W, MacDonald PM, Stanisz GJ, Henkelman RM.Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology, 1994; 192(2): 521–9.

    PubMed  Google Scholar 

  21. Lexa FJ, Grossman RI, Rosenquist AC.Dyke award paper. MR of wallerian degeneration in the feline visual system: characterization by magnetization transfer rate with histopathologic correlation. AJNR: Am J Neuroradiol, 1994; 15(2): 201–12.

    Google Scholar 

  22. Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL.Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology, 1995; 196(2): 511–5.

    PubMed  Google Scholar 

  23. Mathews VP, Elster AD, King JC, Ulmer JL, Hamilton CA, Strottmann JM.Combined effects of magnetization transfer and gadolinium in cranial MR imaging and MR angiography. AJR: Am J. Roentgenology, 1995; 164(1): 169–72.

    Google Scholar 

  24. Mehta RC, Pike GB, Enzmann DR.Improved detection of contrast enhancing and non-contrast enhancing lesion of multiple sclerosis with magnetization transfer. AJNR: Am. J. Neuroradiol, 1995; 16(10): 1771–1778.

    Google Scholar 

  25. Mehta RC, Pike GB, Enzmann DR.Magnetization transfer MR of the normal adult brain. AJNR: Am. J. Neuroradiol, 1995; 16(10): 2085–91.

    Google Scholar 

  26. Mehta RC, Pike GB, Haros SP, Enzmann DR.Central nervous system tumor, infection, and infarction: detection with gadolinium-enhanced magnetization transfer MR imaging. Radiology, 1995; 195(1): 41–6.

    PubMed  Google Scholar 

  27. Miller DH.Magnetic resonance in monitoring the treatment of multiple sclerosis. Ann Neurol, 1994; 36 Suppl(36 Suppl): S91–4.

    Article  PubMed  Google Scholar 

  28. Pierce WB, Harms SE, Flamig DP, Griffey RH, Evans WP, Hagans JE.Three-dimensional gadolinium-enhanced MR imaging of the breast: Pulse sequence with fat suppression and magnetization transfer contrast. Radiology, 1991; 181: 757–763.

    PubMed  Google Scholar 

  29. Pike GB.Pulsed magnetization transfer contrast in gradient echo imaging: A two-pool analytic description of signal response. Magn Reson Med, 1996; 36(1): 95–103.

    PubMed  Google Scholar 

  30. Pike GB, De Stefano N, Fu L, Narayanan S, Francis G, Antel J, Arnold D.Magnetization transfer and proton spectroscopic imaging of multiple sclerosis. In Third Meeting of the Society of Magnetic Resonance, page 112, Nice, France, 1995.

  31. Pike GB, Glover GH, Hu BS, Enzmann DR.Pulsed magnetization transfer spin-echo MR imaging. J Magn Resona Imaging, 1993; 3(3): 531–9.

    Google Scholar 

  32. Pike GB, Hu BS, Glover GH, Enzmann DR.Magnetization transfer time-of-flight magnetic resonance angiography. Magn Reson Med, 1992; 25(2): 372–9.

    PubMed  Google Scholar 

  33. Schnall MD, Dougherty L, Outwater E, Dousset V.Technique for magnetization transfer imaging at 1.5T using steady state pulsed saturation. In Proceedings of the Tenth Annual Meeting of the SMRM, page 175, San Francisco, 1991.

  34. Schneider E, Glover GH.A quantitative comparison of CW and pulsed saturation transfer. In Proceedings of the Tenth Annual Meeting of the SMRM, page 672, San Francisco, 1991.

  35. Schneider E, Prost RW, Glover GH.Pulsed magnetization transfer versus continuous wave irradiation for tissue contrast enhancement. J. Magn Reson Imaging, 1993; 3(2): 417–23.

    PubMed  Google Scholar 

  36. Tanttu JI, Sepponen RE, Lipton MJ, Kuusela T.Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer. J. Comput. Assist. Tomogr., 1992; 16(1): 19–24.

    PubMed  Google Scholar 

  37. Tomiak MM, Rosenblum JD, Prager JM, Metz CE.Magnetization transfer: a potential method to determine the age of multiple sclerosis lesions. AJNR: Am J. Neuroradiol, 1994; 15(8): 1569–74.

    Google Scholar 

  38. Wallace CJ, Seland TP, Fong TC.Multiple sclerosis: The impact of MR imaging. Am J of Roentgenology, 1992; 158: 849–857.

    Google Scholar 

  39. Wolff SD, Balaban RS.Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med, 1989; 10(1): 135–144.

    PubMed  Google Scholar 

  40. Wolff SD, Fralix TA, Simon SA, Balaban RS.Magnetization transfer spectroscopy of model systems: A probe for the molecular basis of tissue contrast in MRI. In Proceedings of the Ninth Annual Meeting of the SMRM, page 350, New York, 1990.

  41. Yeung HN, Aisen AM.Magnetization transfer contrast with periodic pulsed saturation. Radiology, 1992; 183: 209–214.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support was provided by the Medical Research Council of Canada, Fonds de la Recherche en Santé du Québec, and the Killam Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pike, G.B. Magnetization transfer imaging of multiple sclerosis. Ital J Neuro Sci 18, 359–365 (1997). https://doi.org/10.1007/BF02048239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02048239

Key Words

Navigation