Acta diabetologia latina

, Volume 18, Issue 3, pp 243–250 | Cite as

Plasma acidic glycohydrolases in insulin-dependent diabetes mellitus

  • Elaine Kohler
  • Kumudchandra J. Sheth
  • Thomas A. Good
Original Contributions


We assayed plasma activities of Β-galactosidase, Β-hexosaminidase, α-mannosidase, α-fucosidase and α-galactosidase involved in degradation of the glycoprotein molecule in 110 insulin-dependent diabetics aged 3-1/2 to 19 years and compared them to a group of normal youngsters. We correlated the plasma enzyme activities with the duration, control and sequelae of insulin-dependent diabetes. Insulin-dependent diabetics had a significantly higher plasma activity of Β-hexosaminidase and α-mannosidase (p<0.01) and a significantly lower plasma activity of α-fucosidase and α-galactosidase (p<0.01). Of the 5 enzymes studied, only plasma Β-hexosaminidase correlated with fasting and postprandial blood sugar (p<0.01), cholesterol and triglycerides (p<0.05). Additionally, poor control of diabetes was also associated with a significantly higher plasma Β-hexosaminidase activity (p<0.01). Proteinuria or an abnormal Addis count suggestive of renal involvement was associated with various changes in plasma acidic hydrolases. These changes may be related to insulin deficiency rather than hyperglycemia and may be genetically determined.


Fucosidase Galactosidase Hexosaminidase Juvenile diabetes mellitus Lysosomal enzymes Mannosidase Plasma glycohydrolases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Beisswenger P. J., Spiro R. G.: Human glomerular basement membrane: chemical alteration in diabetes mellitus - Science168, 596, 1970.PubMedGoogle Scholar
  2. 2).
    Belfiore F., Lo Vecchio L., Napoli E., Borzi V.: Increased Β-N-acetyl-glucosaminidase activity in diabetes mellitus - Clin. Chem.20, 1229, 1974.PubMedGoogle Scholar
  3. 3).
    Berliner J. H.: Insulin induced alterations in 3T3 cell membranes - Diabetes26 (Suppl. 1), 387, 1977; abstract #136.Google Scholar
  4. 4).
    Bomback F. M., Nakagawa S., Kumin S., Nitowsky H. M.: Altered lysosomal glycohydrolase activities in juvenile diabetes mellitus - Diabetes25, 420, 1976.PubMedGoogle Scholar
  5. 5).
    Brownlee M., Spiro R. G.: Glomerular basement membrane metabolism in the diabetic rat:in vivo studies - Diabetes28, 121, 1979.PubMedGoogle Scholar
  6. 6).
    Carpenter J. L., Gorden P., Freychet P., Lecam A., Orci L.: Lysosomal association of internalized125I-insulin in isolated rat hepatocytes - J. clin. Invest.63, 1249, 1979.PubMedGoogle Scholar
  7. 7).
    Chang A. Y.: Acid glycohydrolase in Chinese hamster with spontaneous diabetes. I. Depressed levels of renal α-galactosidase and Β-galactosidase - Biochim. biophys. Acta (Amst.)522, 491, 1978.Google Scholar
  8. 8).
    Chang A. Y., Perry C. S.: Acid glycohydrolase in Chinese hamster (Cricetulus griseus) with spontaneous diabetes. V. Subcellular distribution in the kidney - Comp. Biochem. Physiol.62B, 557, 1979.Google Scholar
  9. 9).
    Clements R. S., Reynertson R.: Myoinositol metabolism in diabetes mellitus. Effect of insulin treatment - Diabetes26, 215, 1977.PubMedGoogle Scholar
  10. 10).
    Desnick R. J., Allen K. Y., Desnick S. J., Roman M. K., Bernlohr R. W., Krivit W.: Fabry's disease: enzymatic diagnosis of hemizygotes and heterozygotes - J. Lab. clin. Med.81, 157, 1973.PubMedGoogle Scholar
  11. 11).
    Kohler E.: Diabetic day. Setting goals for child-directed ambulatory program - Clin. Pediat. (Phila.)17, 24, 1978.Google Scholar
  12. 12).
    Kohler E., Sheth K. J., Good T. A.: Urinary acidic glycohydrolases as an index of kidney damage in juvenile diabetes mellitus - Acta diabet. lat.16, 247, 1979.Google Scholar
  13. 13).
    Mahadevan S., Dillard C. J., Tappel A. L.: Degradation of polysaccharides, mucopolysaccharides, and glycoproteins by lysosomal glycosidases - Arch. Biochem.129, 525, 1969.CrossRefPubMedGoogle Scholar
  14. 14).
    McMillan D. E.: Elevation of glycoprotein fucose in diabetes mellitus - Diabetes21, 863, 1972.PubMedGoogle Scholar
  15. 15).
    Miller B. F., Keyes F. P., Curreir P. W.: Increase of serum Β-glucuronidase activity in human diabetes mellitus - J. Amer. med. Ass.195, 189, 1966.CrossRefGoogle Scholar
  16. 16).
    O'Brien J. S., Okada S., Chen A., Fillerup D. L.: Tay-Sachs disease. Detection of heterozygotes and homozygotes by serum hexosaminidase assay - New Engl. J. Med.283, 15, 1970.PubMedGoogle Scholar
  17. 17).
    Ockerman P. A.: Fluorimetric estimation of 4-methyl-umbelliferyl-α-mannosidase activity in blood plasma - Clin. chim. Acta23, 479, 1969.CrossRefPubMedGoogle Scholar
  18. 18).
    Reglero A., Carretero M. I., Cabezas J. A.: Increased serum α-L-fucosidase and Β-N-acetyl- glucosaminidase activities in diabetic, cirrhotic, and gastric cancer patients - Clin. chim. Acta103, 155, 1980.CrossRefPubMedGoogle Scholar
  19. 19).
    Rosenblit P. D., Metzger R. P., Wick A. N.: Effect of streptozotocin diabetes on acid phosphatase and selected glycosidase activities of serum and various rat organs - Proc. Soc. exp. Biol. (N.Y.)145, 244, 1974.Google Scholar
  20. 20).
    Sheth K. J., Good T. A.: Urinary acidic hydrolases in renal diseases in children - Clin. Nephrol.10, 151, 1978.PubMedGoogle Scholar
  21. 21).
    Smorto M. P., Basmajian J. V.: Clinical electroneurography - Williams & Wilkins, Baltimore, 1972.Google Scholar
  22. 22).
    Soret M. G., Peterson T., Block E. M., Chang A. Y.: Glomerular capillary basement membrane thickening in spontaneously diabetic Chinese hamster. Morphological and biochemical differences between genetic sublines - Diabetes27 (Suppl. 2), 446, 1978; abstract # 62.Google Scholar
  23. 23).
    Spiro R. G.: Glycoproteins and diabetic microangiopathy - In:Marble A., White P., Bradley R. F., Krall P. (Eds): Joslin's diabetes mellitus. 11th ed. Lea & Febiger, Philadelphia, 1971; p. 146.Google Scholar
  24. 24).
    Tarui S., Saito Y., Fushimi H.: The progression of diabetic microangiopathy and lysosomal glycosidases: clinical studies in Japanese diabetics and experimental approaches with the streptozotocin-diabetic rats - In:Baba S., Goto Y., Fukui I. (Eds): Diabetes mellitus in Asia. Ecological aspects of epidemiology, complications and treatment. Excerpta Medica, Amsterdam-Oxford, 1976; p. 212.Google Scholar
  25. 25).
    Whiting P. H., Ross I. S., Borthwick W.: N-acetyl-Β-glucosaminidase levels and diabetic microangiopathy - Clin. chim. Acta97, 191, 1979.CrossRefPubMedGoogle Scholar
  26. 26).
    Woollen J. W., Turner P.: Plasma N-acetyl-Β-glucosaminidase in health and disease - Clin. chim. Acta12, 621, 1965.Google Scholar
  27. 27).
    Zielke K., Okada S., O'Brien J. S.: Fucosidosis: diagnosis by serum assay of α-fucosidase - J. Lab. clin. Med.79, 164, 1972.PubMedGoogle Scholar

Copyright information

© Casa Editrice 1981

Authors and Affiliations

  • Elaine Kohler
    • 1
  • Kumudchandra J. Sheth
    • 1
  • Thomas A. Good
    • 1
  1. 1.Department of PediatricsMedical College of Wisconsin Milwaukee Children's HospitalMilwaukee

Personalised recommendations