Advertisement

Europium removal with a mineral mixtre

  • A. Mannan
  • S. Ahmad
  • M. Daud
  • I. H. Qureshi
Article

Abstract

Natural mixture containing mostly minerals of iron, sillicon, magnesium, aluminium and calcium was exploited for the decontamination study of europium radionuclides from aqueous radioactive waste solutions. The physicochemical conditions, such as shaking and equilibration time, nature of hydrogen ions, pH, temperature, concentrations of adsorbate and adsorbent were experimentally determined. This study showed quantitative adsorption beyond pH 7 and under optimized conditions, up to 33 g of the adsorbate can be rapidly removed from radioactive effluents using only 1 kg of the mineral mixture (MM). Desorption study of the solidified radioactive waste product reveals no significant loss (< 0.01% month), indicating MM as an effective material for removal of radioactive europium and storing it in solid form over a long period of time.

Keywords

Magnesium Europium Radionuclide Significant Loss Radioactive Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evaluation of Actinide Partioning and Transmutation, International Atomic Energy Agency, Technical Report Series No. 214, Vienna, 1982.Google Scholar
  2. 2.
    H. MIMURA, T. KANNO, J. Nucl. Sci Technol., 22 (1985) 284.Google Scholar
  3. 3.
    S. AHMAD, I. H. QURESHI, Intern. J. Environ. Anal. Chem., 44 (1991 257.Google Scholar
  4. 4.
    S. AHMAD, I. H. QURESHI, J. Radioanal. Nucl. Nucl. Chem., 130 (1989) 347.Google Scholar
  5. 5.
    S. AHMAD, I. H. QURESHI, Sep. Sci. Techol., 24 (1989) 569.Google Scholar
  6. 6.
    S. MUSIC, M. GESSNER, R. H. H. WOLF, J. Radioanal. Chem., 50 (1979) 91.Google Scholar
  7. 7.
    SYD MOOSA HASANY, MUNAWAR HUSSAIN CHAUDHARY, Sep. Sci. Technol., 21 (1986) 97.Google Scholar
  8. 8.
    C. BIGLIOCCA, F. GIRARDI, J. PAULEY, E. SABBIONI, Anal. Chem., 39 (1967) 1634.CrossRefGoogle Scholar
  9. 9.
    L. H. BAETLE, D. HUYS, J. Inorg. Nucl. Chem., 30 (1968) 639.CrossRefGoogle Scholar
  10. 10.
    E. AKATSU, R. ONO, K. TSUKUECHI, J. Nucl. Sci. Technol., 2 (1965) 141.Google Scholar
  11. 11.
    SHIH-YUNG SHIAO, Y. EGOZY, R. E. MEYER, Trans. Am. Nucl. Soc., 34 (1980) 123.Google Scholar
  12. 12.
    L. PIETRELLI, A. SALLUZZO, F. TROIANI, J. Radioanal. Nucl. Chem. 141 (1990) 107.CrossRefGoogle Scholar
  13. 13.
    A. MANNAN, S. WAHEED, I. H. QURESHI, J. Radioanal. Nucl. Chem., 134 (1989) 161.Google Scholar
  14. 14.
    K. H. LIESER, Sorptioin and Filtration Methods for Gas and Water Purification, NATO Advanced Study Institute Series), Nordhoff, Leiden, 1975.Google Scholar
  15. 15.
    K. H. LIESER, Radiochim. Acta, 40 (1986) 33.Google Scholar
  16. 16.
    S. MATTSON, A. J. PUGH, Soil Sci., 38 (1934) 229.Google Scholar
  17. 17.
    G. A. PARKS, A study of the surface of ferric oxide in aqueous solutiion, Ph.D. Thesis, Department of Metallurgy, MIT, Boston, 1960.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • A. Mannan
    • 1
  • S. Ahmad
    • 1
  • M. Daud
    • 1
  • I. H. Qureshi
    • 1
  1. 1.Nuclear Chemistry DivisionPukistan Institute of Nuclear Science & TechnologyIslamabadPakistan

Personalised recommendations