Skip to main content
Log in

Self-diffusion and trace component diffusion of chloride ion in particles of hydrous ceric oxide as a function of chloride ion capacity

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Self-diffusion coefficients for chloride ion were measured as a function of chloride ion capacity in solutions of varying acdity using particles of hydrous ceric oxide heated at 50, 200 and 400°C. The measured self-diffusion coefficients are dependent only upon the total chloride ion capacity. At the same capacity, self-diffusion coefficients are almost the same for ceria particles heated at different temperatures. The trace component diffusion coefficients of chloride ion in the nitrate-form of the oxide, dried at 50°C, were also measured. Under the same conditions, the self-diffusion coefficients are somewhat higher or close to the trace component diffusion coefficient for the sample dried at 50°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. ABE, in: Inorganic Ion exchange materials, R. C. CLEARFIELD (Ed.) CRC, Boca Raton, Florida, 1982, Chap. 6.

    Google Scholar 

  2. A. RUVARAC, in: Inorganic Ion Exchange Materials, R. C. CLEARFIELD, (Ed.) CRC, Boca Raton, Florida, 1982, Chap. 5.

    Google Scholar 

  3. I. M. EL-NAGGAR, H. B. MAGHRAWY, J. Radioanal. Nucl. Chem., 116 (1987) 325.

    Article  Google Scholar 

  4. N. Z. MISAK, I. M. EL-NAGGAR, Reactive Polymers, 10 (1989) 67.

    Article  Google Scholar 

  5. N. Z. MISAK, H. B. MAGHRAWY, I. M. EL-NAGGAR, N. SH. PETRO, Solid State Ionics, 37 (1989) 1.

    Article  Google Scholar 

  6. N. Z. MISAK, N. SH. PETRO, I. M. EL-NAGGAR, H. B. MAGHRAWY, H. F. GHONEIMY, E. I. SHABANA, Final report, IAEA, Research Contract No. 2716=RB, 1985.

  7. G. H. NANCOLLAS, R. PATERSON, J. Inorg. Nucl. Chem., 22 (1961) 259.

    Article  Google Scholar 

  8. C. B. AMPHLETT, Inorganic Ion Exchangers, Elsevier, Amsterdam, 1964.

    Google Scholar 

  9. S. J. HARVEY, G. H. NANCOLLAS, J. Inorg. Nucl. Chem., 32 (1970) 3923.

    Article  Google Scholar 

  10. F. HELFFERICH, Ion Exchange, McGraw Hill, New York, 1962.

    Google Scholar 

  11. S. PATERSON, Proc. Phys. Soc., 59 (1947) 50.

    Article  Google Scholar 

  12. G. EISENMAN, Biophys. J., 2 (1962) 259.

    PubMed  Google Scholar 

  13. D. REICHENBERG, Ion Exchange Selectivity, in: J. A. MARINSKY (Ed.), Ion Exchange, Vol. 1, Marcel Dekker, New York, 1966, Chap. 7.

    Google Scholar 

  14. C. R. GARDNER, R. PATERSON, D. L. SHORT, J. Inorg. Nucl. Chem., 34 (1972) 2057.

    Article  Google Scholar 

  15. E. I. SHABANA, Ph. D. Thesis, Ain Shams University, Cairo, 1987.

  16. E. M. MIKHAIL, N. Z. MISAK, J. Solv. Extr. Ion Exch., 5 (1987) 963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabana, E.I., El-Naggar, I.M. & El-Absy, M.A. Self-diffusion and trace component diffusion of chloride ion in particles of hydrous ceric oxide as a function of chloride ion capacity. Journal of Radioanalytical and Nuclear Chemistry, Articles 157, 245–253 (1992). https://doi.org/10.1007/BF02047439

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02047439

Keywords

Navigation