Communications in Mathematical Physics

, Volume 78, Issue 4, pp 545–566 | Cite as

Lattice systems with a continuous symmetry

III. Low temperature asymptotic expansion for the plane rotator model
  • Jean Bricmont
  • Jean-Raymond Fontaine
  • Joel L. Lebowitz
  • Elliott H. Lieb
  • Thomas Spencer


We prove that the expansion in powers of the temperatureT of the correlation functions and the free energy of the plane rotator model on ad-dimensional lattice is asymptotic to all orders inT. The leading term in the expansion is the spin wave approximation and the higher powers are obtained by the usual perturbation series. We also prove the inverse power decay of the pair correlation at low temperatures ford=3.


Neural Network Free Energy Correlation Function High Power Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bricmont, J., Fontaine, J.R.: Correlation inequalities and contour estimates (in preparation)Google Scholar
  2. 2.
    Bricmont, J., Fontaine, J.R., Landau, L.J.: Commun. Math. Phys.56, 281 (1977)CrossRefGoogle Scholar
  3. 3.
    Bricmont, J., Fontaine, J.R., Lebowitz, J.L., Spencer, T.: Lattice systems with a continuous symmetry. I. Commun. Math. Phys.78, 281–302 (1980)CrossRefGoogle Scholar
  4. 4.
    Bricmont, J., Fontaine, J.R., Lebowitz, J.L., Spencer, T.: Lattice systems with a continuous symmetry. II. Commun. Math. Phys.78, 363–371 (1981)CrossRefGoogle Scholar
  5. 5.
    Brascamp, H.J., Lieb, E.H.: J. Funct. Anal.22, 366 (1976)CrossRefGoogle Scholar
  6. 6.
    Brezin, E.: Proceedings of the 13th IUPAP Conference on Statistical Physics [(ed.) Cabib, D., Kuper, C., and Reiss]. Haifa 1977Google Scholar
  7. 7.
    Dobrushin, R.L.: Funct. Anal. and Appl.2, 292 (1968)CrossRefGoogle Scholar
  8. 8.
    Dobrushin, R.L., Shlosman, S.B.: Commun. Math. Phys.42, 31 (1975)CrossRefGoogle Scholar
  9. 9.
    Dunlop, F., Newman, C.: Commun. Math. Phys.44, 223 (1975)CrossRefGoogle Scholar
  10. 10.
    Dunlop, F.: Commun. Math. Phys.49, 247 (1976)CrossRefGoogle Scholar
  11. 11.
    Elitzur, S.: The applicability of perturbation expansion to two-dimensional Goldstone systems. I.A.S. Princeton preprint 1019Google Scholar
  12. 12.
    Fröhlich, J., Guerra, F., Robinson, D., Stora, R. (eds.): Marseille Conference C.N.R.S. 1975Google Scholar
  13. 13.
    Fröhlich, J., Simon, B., Spencer, T.: Commun. Math. Phys.50, 79 (1976)CrossRefGoogle Scholar
  14. 14.
    Ginibre, J.: Commun. Math. Phys.16, 310 (1970)CrossRefGoogle Scholar
  15. 15.
    Hegerfeldt, G.: Commun. Math. Phys.57, 259 (1977)CrossRefGoogle Scholar
  16. 16.
    Kunz, H., Pfister, C.E., Vuillermot, J.: Phys. A. Math. Gen.9, 1673 (1976)CrossRefGoogle Scholar
  17. 17.
    Lanford, O., Ruelle, D.: Commun. Math. Phys.13, 194 (1969)CrossRefGoogle Scholar
  18. 18.
    Lebowitz, J., Penrose, O.: Commun. Math. Phys.11, 99 (1968)CrossRefGoogle Scholar
  19. 19.
    Lebowitz, J., Penrose, O.: Phys. Rev. Lett.35, 549 (1975)CrossRefGoogle Scholar
  20. 20.
    Lee, T.D., Yang, C.N.: Phys. Rev.87, 410 (1952)CrossRefGoogle Scholar
  21. 21.
    Mermin, D.: J. Math. Phys.6, 1061 (1967)CrossRefGoogle Scholar
  22. 22.
    Messager, A., Miracle-Sole, S.: J. Stat. Phys.17, 245 (1977)CrossRefGoogle Scholar
  23. 23.
    Messager, A., Miracle-Sole, S., Pfister, C.E.: Commun. Math. Phys.58, 19 (1978)CrossRefGoogle Scholar
  24. 24.
    Schrader, R.: Phys. Rev. B15, 2798 (1977)CrossRefGoogle Scholar
  25. 25.
    Sokal, A.: In preparationGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Jean Bricmont
    • 1
  • Jean-Raymond Fontaine
    • 2
  • Joel L. Lebowitz
    • 2
  • Elliott H. Lieb
    • 3
  • Thomas Spencer
    • 2
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsRutgers UniversityNew BrunswickUSA
  3. 3.Department of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations