Antonie van Leeuwenhoek

, Volume 30, Issue 1, pp 385–394 | Cite as

Sulphur metabolism in Thiorhodaceae. II. stoichiometric relationship of CO2 fixation to oxidation of hydrogen sulphide and intracellular sulphur inChromatium okenii

  • H. G. Trüper
Article

Abstract

Stoichiometry of sulphide and intracellular sulphur oxidation in connection with CO2 fixation was studied inChromatium okenii. The equipment used was a special stirred cuvette with a rapid-sampling arrangement, which allowed short-time experiments with illuminated bacterial suspensions under anaerobic conditions. Turnover of the sulphur compounds is controlled by a linear CO2 fixation rate which amounts to 0.069µmoles of CO2/min mg of cell protein at light saturation. Van Niel's equations for bacterial photosynthesis could be confirmed for short periods under the condition that sulphate is produced during increase of intracellular sulphur; i.e., oxidation of sulphide and of intracellular sulphur do not occur consecutively but simultaneously. The full oxidation rate of intracellular sulphur starts after complete consumption of sulphide. The time during which sulphide is oxidized to intracellular sulphur amounts to 1/3–1/4 of the time necessary for the complete quantitative oxidation of the sulphide to sulphate.

Keywords

Sulphide Anaerobic Condition Oxidation Rate Bacterial Suspension Sulphur Compound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelmann, T. W. 1883.Bacterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht- und Farbensinnes. Arch. Ges. Physiol.30: 90–124.Google Scholar
  2. Izawa, S. 1962. Methylene blue inhibition of photosynthesis inRhodopseudomonas palustris. Plant Cell Physiol. (Tokyo)3: 43–51.Google Scholar
  3. Larsen, H. 1952. On the culture and general physiology of the green sulfur bacteria. J. Bacteriol.64: 187–196.PubMedGoogle Scholar
  4. Muller, F. M. 1933. On the metabolism of the purple sulphur bacteria in organic media. Arch. Mikrobiol.4: 131–166.Google Scholar
  5. van Niel, C. B. 1932. On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol.3: 1–112.Google Scholar
  6. van Niel, C. B. 1941. The bacterial photosyntheses and their importance for the general problem of photosynthesis. Advan. Enzymol.1: 263–328.Google Scholar
  7. Pachmayr, F. 1960. Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Thesis, München (Univ.).Google Scholar
  8. Pfennig, N. 1961. Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften48: 136.Google Scholar
  9. Trüper, H. G. 1964. CO2-Fixierung und Intermediärstoffwechsel beiChromatium okenii Perty. Arch. Mikrobiol.49: 23–50.PubMedGoogle Scholar
  10. Trüper, H. G. andSchlegel, H. G. 1964. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells ofChromatium okenii. Antonie van Leeuwenhoek30: 225–238.PubMedGoogle Scholar
  11. Winogradsky, S. 1888. Beiträge zur Morphologie und Physiologie der Bacterien. I. Zur Morphologie und Physiologie der Schwefelbacterien. Arthur Felix, Leipzig.Google Scholar

Copyright information

© Swets & Zeitlinger 1964

Authors and Affiliations

  • H. G. Trüper
    • 1
  1. 1.Institute of MicrobiologyThe UniversityGöttingenGermany

Personalised recommendations