Antonie van Leeuwenhoek

, Volume 30, Issue 1, pp 343–376 | Cite as

Electron microscopy of the endophyte ofAlnus glutinosa

  • J. H. Becking
  • Willemina E. de Boer
  • A. L. Houwink
Article

Abstract

Earlier light microscopic investigations have revealed that the endophyte ofAlnus glutinosa presents itself in three different forms. In the present study this is confirmed by electron microscopy; also, new data on the cytology of the endophyte have been obtained.

The host cells are primarily infected by the hyphal form of the endophyte. A plant cell nucleus and mitochondria can be found in the infected host cells.

In the majority of the infected cells, so-called vesicles develop at the tips of the hyphae. Electron micrographs show that these vesicles, as well as the hyphae, are surrounded by the host-cell cytoplasmic membrane. The endophyte cytoplasm inside the vesicles is divided in all directions by cross walls, many of which are incomplete. Plasmalemmosomes are conspicuous. Some vesicles look vigorous but others shrunken or nearly devoid of cytoplasm as if being digested.

A minority of host cells situated between the vesicle-containing ones are completely filled by bacteria-like cells. These host cells, in contrast to the other ones, do not contain a nucleus nor mitochondria, nor are the endophyte cells in them enveloped by a host cell cytoplasmic membrane: these host cells are dead. Vesicles are not found in these cells.

It is inferred that a living host cell exerts a stimulus on the endophyte to which the latter responds by forming vesicles at the tips of the hyphae. At a later stage the host cells digest the vesicles and the hyphae. On the other hand, if a host cell does not survive the infection, the hyphae divide into bacteria-like cells, which are not digested owing to the absence of host cytoplasm.

According to the cytology of the hyphae, the endophyte is an actinomycete.

The cytology of the endophyte needs further elucidation. Its plasmalemmosomes, or membranous bodies connected with the cytoplasmic membrane, are beautifully developed. The striated bodies described on p. 359 under 4) may be a new feature, which may turn up in other actinomycetes or bacteria.

Keywords

Electron Microscopy Plant Cell Host Cell Infected Cell Electron Micrographs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becking, J. H. 1961a. Molybdenum and symbiotic nitrogen fixation by alder (Alnus glutinosa Gaertn.). Nature192: 1204–1205.Google Scholar
  2. Becking, J. H. 1961b. A requirement of molybdenum for the symbiotic nitrogen fixation in alder (Alnus glutinosa Gaertn.). Plant and Soil12: 217–228.Google Scholar
  3. Björkenheim, C. G. 1904. Beiträge zur Kenntnis des Pilzes in den Wurzelanschwellungen vonAlnus incana. Z. Pflanzenkrankh. Pflanzenschutz14: 129–133.Google Scholar
  4. Bond, G. 1955. An isotopic study of the fixation of nitrogen associated with nodulated plants ofAlnus, Myrica andHippophaë. J. Exp. Botany6: 303–311.Google Scholar
  5. Bond, G. 1963. The root nodules of non-leguminous angiosperms, p. 72–91.In Symbiotic associations. 13th Symp. Soc. Gen. Microbiol. University Press, Cambridge.Google Scholar
  6. Bond, G. andHewitt, E. J. 1961. Molybdenum and the fixation of nitrogen inMyrica root nodules. Nature190: 1033–1034.Google Scholar
  7. Bouwens, H. 1943. Investigation of the symbiont ofAlnus glutinosa, Alnus incana andHippophae rhamnoides. Antonie van Leeuwenhoek9: 107–114.Google Scholar
  8. Brunchorst, J. 1886. Über einige Wurzelanschwellungen, besonders diejenigen vonAlnus und den Elaeagnaceen. Unters. botan. Inst. Tübingen2: 151–177.Google Scholar
  9. Chen, P. L. 1962. The fine structure ofStreptomyces cinnamonensis, p. UU-5.In S. S. Breese, Jr., [ed.], Electron microscopy, Fifth Intern. Congr. Electron Microscopy. Academic Press, New York.Google Scholar
  10. Chen, P. L. 1964. The membrane system ofStreptomyces cinnamonensis. Am. J. Botan.51: 125–132.Google Scholar
  11. Chodat, R. 1904. Sur les parasites des racines d'Alnus. Bull. Herb. Boissier, 2me Série4: 296.Google Scholar
  12. Dart, P. J. andMercer, F. V. 1963. The intracytoplasmic membrane system of the bacteroids of subterraneum clover nodules (Trifolium subterraneum L.). Arch. Mikrobiol.47: 1–18.Google Scholar
  13. Dinger, R. 1895. De Els een stikstofverzamelaar. Landbouwk. Tijdschr.3: 167–192.Google Scholar
  14. Edwards, M. R. andGordon, M. A. 1962. Membrane systems ofActinomyces bovis, p. UU-3.In S. S. Breese, Jr., [ed.], Electron Microscopy, Fifth Intern. Congr. Electron Microscopy. Academic Press, New York.Google Scholar
  15. Edwards, M. R. andStevens, R. W. 1963. Fine structure ofListeria monocytogenes. J. Bacteriol.86: 414–428.PubMedGoogle Scholar
  16. Fitz-James, P. C. 1960. Participation of the cytoplasmic membrane in the growth and spore formation of Bacilli. J. Biophys. Biochem. Cytol.8: 507–528.PubMedGoogle Scholar
  17. Frank, B. 1887. Sind die Wurzelanschwellungen der Erlen und Eläagnaceen Pilzgallen? Ber. Deut. Botan. Ges.5: 50–58.Google Scholar
  18. Frank, B. 1891. Ueber die auf Verdauung von Pilzen abzielende symbiose der mit endotrophen Mykorhizen begabten Pflanzen, sowie der Leguminosen und Erlen. Ber. Deut. Botan. Ges.9: 244–253.Google Scholar
  19. Giesbrecht, P. 1960. Über „organisierte“ Mitochondrien und andere Feinstrukturen vonBacillus megaterium. Zentr. Bakteriol. Parasitenk. I. Abt. Orig.179: 538–581.Google Scholar
  20. Glauert, A. M. 1962. The fine structure of bacteria. Brit. Med. Bull.18: 245–250.PubMedGoogle Scholar
  21. Glauert, A. M. andHopwood, D. A. 1960. The fine structure ofStreptomyces coelicolor. I. The cytoplasmic membrane system. J. Biophys. Biochem. Cytol.7: 479–488.PubMedGoogle Scholar
  22. Hagedorn, H. 1959. Elektronenmikroskopische Untersuchungen anStreptomyces griseus (Krainsky). Zentr. Bakteriol. Parasitenk. II. Abt.113: 234–253.Google Scholar
  23. Hawker, L. E. andFraymouth, J. 1951. A re-investigation of the root-nodules of species ofElaeagnus, Hippophae, Alnus andMyrica, with special reference to the morphology and life histories of the causative organisms. J. Gen. Microbiol.5: 369–386.PubMedGoogle Scholar
  24. Hewitt, E. J. andBond, G. 1961. Molybdenum and the fixation of nitrogen inCasuarina andAlnus root nodules. Plant and Soil14: 159–176.Google Scholar
  25. Hiltner, L. 1896. Über die Bedeutung der Wurzelknöllchen vonAlnus. Landwirtsch. Vers. Sta.46: 153–161.Google Scholar
  26. Imaeda, T. andOgura, M. 1963. Formation of intracytoplasmic membrane system of Mycobacteria related to cell division. J. Bacteriol.85: 150–163.PubMedGoogle Scholar
  27. van Iterson, W. 1961. Some features of a remarkable organelle inBacillus subtilis. J. Biophys. Biochem. Cytol.9: 183–192.PubMedGoogle Scholar
  28. Käppel, M. undWartenberg, H. 1958. Der Formenwechsel desActinomyces alni Peklo in den Wurzeln vonAlnus glutinosa Gaertner. Arch. Mikrobiol.30: 46–63.Google Scholar
  29. Krebber, O. 1932. Untersuchungen über die Wurzelknöllchen der Erle. Arch. Mikrobiol.3: 588–608.Google Scholar
  30. Lieske, R. 1921. Morphologie und Biologie der Strahlenpilze (Actinomyceten). Borntraeger, Leipzig.Google Scholar
  31. Löhnis, M. P. 1930. Investigations upon the ineffectiveness of root-nodules on leguminosae. Zentr. Bakteriol. Parasitenk. II. Abt.80: 342–368.Google Scholar
  32. Möller, H. 1885.Plasmodiophora Alni. Ber. Deut. Botan. Ges.3: 102–105.Google Scholar
  33. Moeller, H. 1890. Beitrag zur Kenntniss derFrankia subtilis Brunchorst. Ber. Deut. Botan. Ges.8: 215–224.Google Scholar
  34. Moore, R. T. andChapman, G. B. 1959. Observations of the fine structure and modes of growth of a streptomycete. J. Bacteriol.78: 878–885.PubMedGoogle Scholar
  35. Murray, R. G. E. 1963. The organelles of bacteria, p. 28–52.In D. Mazia and A. Tyler, [ed.], General physiology of cell specialization. McGraw-Hill, New York.Google Scholar
  36. Peklo, J. 1910. Die pflanzlichen Aktinomykosen. Zentr. Bakteriol. Parasitenk. II. Abt.27: 451–579.Google Scholar
  37. Petras, E. 1959. Elektronenmikroskopische Untersuchungen anStreptomyces purpurascens Lindenbein. Arch. Mikrobiol.34: 379–392.PubMedGoogle Scholar
  38. von Plotho, O. 1941. Die Synthese der Knöllchen an den Wurzeln der Erle. Arch. Mikrobiol.12: 1–18.Google Scholar
  39. Pommer, E.-H. 1959. Über die Isolierung des Endophyten aus den WurzelknöllchenAlnus glutinosa Gaertn. und über erfolgreiche Re-Infektionsversuche. Ber. Deut. Botan. Ges.72: 138–150.Google Scholar
  40. Quispel, A. 1954a. Symbiotic nitrogen-fixation in non-leguminous plants. I. Preliminary experiments on the root-nodule symbiosis ofAlnus glutinosa. Acta Botan. Neerlandica3: 495–511.Google Scholar
  41. Quispel, A. 1954b. Symbiotic nitrogen fixation in non-leguminous plants. II. The influence of the inoculation density and external factors on the nodulation ofAlnus glutinosa and its importance to our understanding of the mechanism of the infection. Acta Botan. Neerlandica3: 512–532.Google Scholar
  42. Quispel, A. 1955. Symbiotic nitrogen fixation in non-leguminous plants. III. Experiments on the growth in vitro of the endophyte ofAlnus glutinosa. Acta Botan. Neerlandica4: 671–689.Google Scholar
  43. Quispel, A. 1960. Symbiotic nitrogen fixation in non-leguminous plants. V. The growth requirements of the endophyte ofAlnus glutinosa. Acta Botan. Neerlandica9: 380–396.Google Scholar
  44. Roberg, M. 1934. Über den Erreger der Wurzelknöllchen vonAlnus und den ElaeagnaceenElaeagnus undHippophaë. Jahrb. wiss. Botan.79: 472–492.Google Scholar
  45. Ryter, A., Kellenberger, E., Birch-Andersen, A. etMaaløe, O. 1958. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucléique. I. Les nucléoides des bactéries en croissance active. Z. Naturforschung13b: 597–605.Google Scholar
  46. Salton, M. R. J. andChapman, J. A. 1962. Isolation of the membrane — mesosome structures fromMicrococcus lysodeikticus J. Ultrastructure Res.6: 489–498.Google Scholar
  47. Schaede, R. 1933. Über die Symbionten in den Knöllchen der Erle und des Sanddornes und die cytologischen Verhältnisse in ihnen. Planta19: 389–416.Google Scholar
  48. Schaede, R. 1962. Die pflanzlichen Symbiosen. 3. Aufl. neu bearbeitet von F. H. Meyer. G. Fischer, Stuttgart.Google Scholar
  49. Shibata, K. 1902. Cytologische Studien über die endotrophen Mykorrhizen. Jahrb. wiss. Botan.37: 643:684.Google Scholar
  50. Shibata, K. undTahara, M. 1917. Studien über die Wurzelknöllchen. Botan. Mag. (Tokyo)31: 157–182.Google Scholar
  51. Spratt, E. R. 1912. The morphology of the root tubercles ofAlnus andElaeagnus and the polymorphism of the organism causing their formation. Ann. Botany (London)26: 119–128.Google Scholar
  52. Stuart, D. C. J., Jr. 1959. Fine structure of the nucleoid and internal membrane systems ofStreptomyces. J. Bacteriol.78: 272–281.PubMedGoogle Scholar
  53. Taubert, H. 1956. Über den Infektionsvorgang und die Entwicklung der Knöllchen beiAlnus glutinosa Gaertn. Planta48: 135–156.Google Scholar
  54. Uemura, S. 1952a. Studies on the root nodules of alders (Alnus spp.). IV. Experiment on the isolation of actinomycetes from alder nodules (in Japanese, English summary). Bull. Govern. Forest Exp. Sta. (Tokyo)52: 1–18.Google Scholar
  55. Uemura, S. 1952b. Studies on the root nodules of alders (Alnus spp.). V. Some new isolation methods ofStreptomyces from alder nodules. (in Japanese, English summary). Bull. Govern. Forest Exp. Sta.57: 209–226.Google Scholar
  56. Uemura, S. 1961. Studies on theStreptomyces isolated from alder root nodules (Alnus spp.). About the morphological and physiological properties ofStreptomyces usually isolated from alder and some other non-leguminous root nodules (Myrica rubra, Elaeagnus umbellata andCasuarina equisetifolia). (in Japanese, English summary). Sci. Rept. Agr. Forest Fisheries Res. Council (Tokyo)7: 1–90.Google Scholar
  57. Woronin, M. 1866. Über die bei der Schwarzerle (Alnus glutinosa) und der gewöhnlichen Garten-Lupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mém. Acad. Imp. Sci. St. Pétersbourg, Série 7, T.10, No.6: 1–13.Google Scholar
  58. Zach, F. 1908. Über den in Wurzelknöllchen vonElaeagnus angustifolia undAlnus glutinosa lebenden Fadenpilz. Sitz. Ber. Akad. Wiss. Wien, Math.-Natuw. Kl. I. Abt.117: 973–984.Google Scholar

Copyright information

© Swets & Zeitlinger 1964

Authors and Affiliations

  • J. H. Becking
    • 1
    • 2
  • Willemina E. de Boer
    • 1
    • 2
  • A. L. Houwink
    • 1
    • 2
  1. 1.Laboratory of MicrobiologyAgricultural UniversityWageningenThe Netherlands
  2. 2.Laboratory of MicrobiologyTechnological UniversityDelftThe Netherlands

Personalised recommendations