Antonie van Leeuwenhoek

, Volume 29, Issue 1, pp 393–406 | Cite as

Metabolism of C2 compounds inAcetobacter aceti

  • A. H. Stouthamer
  • J. H. van Boom
  • A. J. Bastiaanse


The presence of isocitrate lyase and malate synthase was detected in cell-free extracts ofAcetobacter aceti, grown in a mineral medium with acetate as sole carbon source. The presence of these enzymes explains the ability of this strain to grow with ethanol or acetate as sole carbon source, which is an important characteristic in Frateur's classification system forAcetobacter. In addition to isocitrate lyase and malate synthase, these cell-free extracts were found to contain glyoxylate carboligase, tartronicsemialdehyde reductase and glycerate kinase. The induction of these enzymes during growth on acetate is thought to be caused by the very high activity of isocitrate lyase, which may lead to an accumulation of glyoxylate. The importance of this pathway in cells growing with acetate as sole carbon source for the synthesis of their carbohydrate components is discussed. The presence of the enzymes from the pathway from glyoxylate to 3-phosphoglycerate explains the ability of this strain to grow with ethyleneglycol and glycollate as sole carbon source.


Acetate Carbohydrate Ethyleneglycol Carbon Source High Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asai, T. andShoda, K. 1958. The taxonomy ofAcetobacter and allied oxidative bacteria. J. Gen. Appl. Microbiol.4 289–311.Google Scholar
  2. Benziman, M. andBurger-Rachamimov, H. 1962. Synthesis of cellulose from pyruvate by succinate-grown cells ofAcetobacter xylinum. J. Bacteriol.84 625–630.PubMedGoogle Scholar
  3. Colowick, S. P. andKalckar, H. M. 1943. The rôle of myokinase in transphosphorylations. I. The enzymatic phosphorylation of hexoses bij adenyl pyrophosphate. J. Biol. Chem.148 117–126.Google Scholar
  4. De Ley, J. 1961. Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol.24 31–50.PubMedGoogle Scholar
  5. Dilworth, M. J. andKennedy, I. R. 1963. Oxygen inhibition inAzotobacter vinelandii. Some enzymes concerned in acetate metabolism. Biochim. Biophys. Acta.67 240–253.PubMedGoogle Scholar
  6. Frateur, J. 1950. Essai sur la systématique desAcetobacters. Cellule, rec. cytol. histol.53 287–392.Google Scholar
  7. Friedemann, T. E. andHaugen, G. E. 1943. Pyruvic acid. II. The determination of keto acids in blood and urine. J. Biol. Chem.147 415–442.Google Scholar
  8. Gromet, Z., Schramm, M. andHestrin, S. 1957. Synthesis of cellulose byAcetobacter xylinum. 4. Enzyme systems present in a crude extract of glucose-grown cells. Biochem. J.67 679–689.PubMedGoogle Scholar
  9. Hauge, J. G., King, T. E. andCheldelin, V. H. 1955. Oxidation of dihydroxyacetone via the pentose cycle inAcetobacter suboxydans. J. Biol. Chem.214 11–26.PubMedGoogle Scholar
  10. Hummel, J. P. 1949. The fluorometric determination of malic acid. J. Biol. Chem.180 1225–1228.Google Scholar
  11. Kersters, K. andde Ley, J. 1963. The oxidation of glycols by acetic acid bacteria. Biochim. Biophys. Acta.71 311–331.PubMedGoogle Scholar
  12. Kimmitt, M. R. andWilliams, P. J. le B. 1963. Systematic position ofGluconobacter liquefaciens. J. Gen. Microbiol.31 447–449.PubMedGoogle Scholar
  13. Kitos, P. A., King, T. E. andCheldelin, V. H. 1957. Metabolism of fructose-1, 6-diphosphate and acetate inAcetobacter suboxydans. J. Bacteriol.74 565–571.PubMedGoogle Scholar
  14. Kornberg, H. L. 1959. Aspects of terminal respiration in microorganisms. Ann. Rev. Microbiol.13 49–78.Google Scholar
  15. Kornberg, H. L. andElsden, S. R. 1961. Metabolism of 2-carbon compounds by microorganisms. Advan. in Enzymol.23 401–470.Google Scholar
  16. Kornberg, H. L. andGotto, A. M. 1959. Biosynthesis of cell constituents from C2-compounds. Formation of malate from glycollate byPseudomonas ovalis Chester. Nature183 1791–1793.PubMedGoogle Scholar
  17. Kornberg, H. L. andGotto, A. M. 1961. The metabolism of C2-compounds in microorganisms. 6. Synthesis of cell constituents from glycollate byPseudomonas sp. Biochem. J.78 69–82.PubMedGoogle Scholar
  18. Kornberg, H. L. andMadsen, N. B. 1958. The metabolism of C2-compounds in microorganisms. 3. Synthesis of malate from acetate via the glyoxylate cycle. Biochem. J.68 549–557.PubMedGoogle Scholar
  19. Krakow, G. andBarkulis, S. S. 1956. Conversion of glyoxylate to hydroxy-pyruvate by extracts ofEscherichia coli. Biochim. Biophys. Acta21 593–594.PubMedGoogle Scholar
  20. Krakow, G., Hayashi, J. A. andBarkulis, S. S. 1959. Tartronic semialdehyde: Initial product of a glyoxylic acid-utilizing reaction in extracts ofEscherichia coli. Federation Proc.18 265.Google Scholar
  21. Krebs, H. A. 1954. Considerations concerning the pathways of synthesis in living matter: synthesis of glycogen from non-carbohydrate precursors. Bull. Johns Hopkins Hosp.95 19–33.PubMedGoogle Scholar
  22. Krebs, H. A. andKornberg, H. L. 1957. Energy transformation in living matter. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol.49 212–285.Google Scholar
  23. Leifson, E. 1954. The flagellation and taxonomy of species ofAcetobacter. Antonie van Leeuwenhoek20 102–110.PubMedGoogle Scholar
  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L. andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193 265–275.PubMedGoogle Scholar
  25. Olson, J. A. 1959. The purification and properties of yeast isocitric lyase. J. Biol. Chem.234 5–10.PubMedGoogle Scholar
  26. Shimwell, J. L. andCarr, J. G. 1959. The genusAcetomonas. Antonie van Leeuwenhoek25 353–368.Google Scholar
  27. Siu, R. M. L., Wood, H. G. andStjernholm, R. L. 1961. Fixation of CO2 by phosphoenolpyruvic carboxytransphosphorylase. J. Biol. Chem.236 PC 21–22.Google Scholar
  28. Smith, R. A. andGunsalus, I. C. 1955. Distribution and formation of isocitritase. Nature175 774–775.Google Scholar
  29. Stouthamer, A. H. 1959. Oxidative possibilities in the catalase positiveAcetobacter species. Antonie van Leeuwenhoek25 241–264.PubMedGoogle Scholar
  30. Stouthamer, A. H. 1960. Koolhydraatstofwisseling van de azijnzuurbacteriën. Thesis, Utrecht.Google Scholar
  31. Stouthamer, A. H. 1961. Glucose and galactose metabolism inGluconobacter liquefaciens. Biochim. Biophys. Acta48 484–500.Google Scholar
  32. Stouthamer, A. H. 1962. Energy production inGluconobacter liquefaciens. Biochim. Biophys. Acta56 19–32.PubMedGoogle Scholar
  33. Utter, M. F. andKurahashi, K. 1954. Mechanism of action of oxalacetic carboxylase. J. Biol. Chem.207 821–841.PubMedGoogle Scholar

Copyright information

© Swets & Zeitlinger 1963

Authors and Affiliations

  • A. H. Stouthamer
    • 1
  • J. H. van Boom
    • 1
  • A. J. Bastiaanse
    • 1
  1. 1.Laboratory for MicrobiologyState UniversityUtrechtThe Netherlands

Personalised recommendations