Einfluß vonBordetella pertussis auf das lymphatische Gewebe von Mäusen

VI. Weitere Untersuchungen über den Einfluß vonBordetella pertussis auf die immunologische Gedächtnisreaktion
  • H. Finger
  • P. Emmerling
  • I. Fölmer
  • M. Bartoschek
Article
  • 13 Downloads

Zusammenfassung

Bei NMRI-Mäusen führte die zusätzliche Injektion von abgetöteten Zellen vonBordetella pertussis im Vergleich zur alleinigen Applikation von Schaferythrocyten zu einer Verstärkung der Primärreaktion und einer signifikant gesteigerten Präparation des lymphoreticulären Gewebes für die immunologische Zweitreaktion, während sich die Tertiärreaktion auf cellulärer und humoraler Ebene von der der ohne Adjuvans vorbehandelten Kontrolltiere wesentlich weniger stark unterschied. Erstmals zusammen mit der zweiten Antigendosis verabfolgte Pertussisorganismen hatten nur einen geringen Einfluß auf die Ausbildung der Sekundärreaktion und bewirkten kein verstärktes „priming“ für die Tertiärreaktion.

Schlüsselwörter

Bordetella pertussis Immunologische Gedächtnisreaktion 

Influence of bordetella pertussis on the lymphatic tissue of mice

VI. Further studies regarding the influence of bordetella pertussis on the immunological memory response

Summary

As compared to the primary immunization of NMRI mice with sheep red blood cells, the additional injection of killed cells ofBordetella pertussis led to an enhanced primary immune response. Furthermore, the bacterial adjuvant caused a significantly increased process of priming for the secondary immune response, whereas the tertiary immune reaction differed considerably less pronounced from that of the corresponding controls at the cellular and humoral levels. If the pertussis vaccine was administered together with the secondary antigenic stimulus of sheep red blood cells only, poor adjuvancy was demonstrable during the secondary response, and an increased process of priming for the tertiary response was not at all detectable.

Key words

Bordetella pertussis Immunological memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Burnet, M. F.: Cellular Immunology. Melbourne University Press., Cambridge University Press,526 (1969).Google Scholar
  2. Burton, K.: The relation between the synthesis of deoxyribonucleic acid and the synthesis of protein in the multiplication of bacteriophage T2. Biochem. J.61, 473 (1955).PubMedGoogle Scholar
  3. Byers, V. S., Sercarz, E. E.: The X-Y-Z scheme of immunocyte maturation. IV. The exhaustion of memory cells. J. exp. Med.127, 307 (1968).PubMedCrossRefGoogle Scholar
  4. Cerottini, J.-C., Trnka, Z.: The role of persisting antigen in the development of imnmnological memory. Int. Arch. Allergy38, 37 (1970).PubMedGoogle Scholar
  5. Cunningham, A. J.: Studies on the cellular basis of IgM immunological memory. Immunology16, 621 (1969).PubMedGoogle Scholar
  6. Dresser, D. W., Wortis, H. H.: Use of an antiglobulin serum to detect cells producing antibody with low haemolytic efficiency. Nature (Lond.)208, 859 (1965).CrossRefGoogle Scholar
  7. — —, Anderson, H. R.: The effect of pertussis vaccine on the immune response of mice to sheep red blood cells. Clin. exp. Immunol.7, 817 (1970).PubMedGoogle Scholar
  8. Emmerling, P., Finger, H.: Untersuchungen zur Spezifität der indirekten Plaque-Technik. II. Die Entwicklungskapazität unterschiedlicher Antiseren gegen 7S- und 19S-Immunglobuline bei der indirekten Antikörper-Plaque-Technik. Z. Immun.-Forsch.139, 66 (1969).Google Scholar
  9. — —, Brüss, E.: Einfluß von Bordetella pertussis auf das lymphatische Gewebe von Mäusen. V. Der Einfluß von Bordetella pertussis auf die Präparation des lymphoretikulären Gewebes für die immunologische Zweitreaktion. Z. med. Mikrobiol. Immunol.155, 48 (1969).PubMedCrossRefGoogle Scholar
  10. Fecsik, A. J., Butler, W. T., Coons, A. H.: Studies on antibody production. XI. Variation in the secondary response as a function of the length of the interval between two antigenic stimuli. J. exp. Med.120, 1041 (1964).PubMedCrossRefGoogle Scholar
  11. Finger, H., Bartoschek, M., Emmerling, P.: Time relationships between injection of antigen and adjuvant. I. Adjuvancy of Bordetella pertussis given at various times before the primary antigenic stimulus. Infection and Immunity2, 590 (1970).PubMedGoogle Scholar
  12. —, Beneke, G., Emmerling, P.: Einfluß von Bordetella pertussis auf das lymphatische Gewebe von Mäusen. I. Erhöhung der Milzgewichte weißer Mäuse nach Injektion von Bordetella pertussis. Z. med. Mikrobiol. Immunol.154, 23 (1968).PubMedCrossRefGoogle Scholar
  13. Finger, H., Emmerling, P., Brüss, E.: The influence of Bordetella pertussis on the preparation of mouse spleens for the secondary immune response. Canad. J. Microbiol.15, 814 (1969).CrossRefGoogle Scholar
  14. — — —: The influence of cyclophosphamide on the process of priming for the secondary response in mice. Experientia (Basel)25, 1183 (1969a).Google Scholar
  15. — — —: Variable adjuvant activity of Bordetella pertussis with respect to the primary and secondary immunization of mice. Infection and Immunity1, 251 (1970).PubMedGoogle Scholar
  16. — —, Büsse, M.: Increased priming for the secondary response in mice to sheep erythrocytes by bacterial endotoxins. Int. Arch. Allergy38, 598 (1970).PubMedGoogle Scholar
  17. — —, Offenhammer, A.: 19S- und 7S-Gedächtnis der Maus nach Erstimmunisierung mit einer immunogenen Schwellendosis von Schaferythrocyten. Z. med. Mikrobiol. Immunol.155, 203 (1970).PubMedCrossRefGoogle Scholar
  18. — — —: Reduced adjuvant activity of Bordetella pertussis in mice after priming with an immunogenic threshold dose. Int. Arch. Allergy39, 45 (1970a).PubMedGoogle Scholar
  19. — —, Tusch, H., Bredt, W.: Einfluß von Bordetella pertussis auf das lymphatische Gewebe von Mäusen. III. Die Beeinflussung der Kinetik der Antikörperbildung gegen Schaferythrocyten durch Bordetella pertussis. Z. Immun.-Forsch.136, 268 (1968).Google Scholar
  20. Gottlieb, S., McLaughlin, F. X., Levine, L., Latham, W. C., Edsall, G.: Long-term immunity to tetanus. A statistical evaluation and its clinical implications. Amer. J. publ. Hlth54, 961 (1964).CrossRefGoogle Scholar
  21. Haurowitz, F.: Evolution of selective and instructive theories of antibody formation. Cold Spr. Harb. Symp. quant. Biol.32, 559 (1967).Google Scholar
  22. Ipsen, J.: Differences in primary and secondary immunizability of inbred mice strains. J. Immunol.83, 448 (1959).PubMedGoogle Scholar
  23. Jerne, N. K., Nordin, A. A., Henry, C.: The agar plaque technique for recognizing antibody-producing cells. In: Cell-bound antibodies (B. Amos und H. Koprowski, Hrsg.), S. 109. Philadelphia: Wistar Institute Press 1963.Google Scholar
  24. Leduc, E. H., Coons, A. H., Connolly, J. M.: Studies on antibody production. II. The primary and secondary response in the popliteal lymph node of the rabbit. J. exp. Med.102, 61 (1955).PubMedCrossRefGoogle Scholar
  25. Makinodan, T., Peterson, W. J.: Further studies on the secondary antibody-forming potential of juvenile, young adult, adult and aged mice. Develop. Biol.14, 112 (1966).PubMedCrossRefGoogle Scholar
  26. Möller, G., Wigzell, H.: Antibody synthesis at the cellular level. Antibody-induced suppression of 19S and 7S antibody response. J. exp. Med.121, 969 (1965).CrossRefPubMedGoogle Scholar
  27. Nettesheim, P., Williams, M. L.: Regenerative potential of immunocompetent cells. II. Factors influencing recovery of secondary antibody-forming potential from X-irradiation. J. Immunol.100, 760 (1968).PubMedGoogle Scholar
  28. Nossal, G. J. V.: Die Regulation der Immunantwort. Klin. Wschr.47, 568 (1969).PubMedCrossRefGoogle Scholar
  29. —, Ada, G. L., Austin, C. M.: Antigens in immunity. II. Immunogenic properties of flagella, polymerized flagellin and flagellin in the primary response. Aust. J. exp. Biol. med. Sci.42, 283 (1964).PubMedGoogle Scholar
  30. —, Austin, C. M., Ada, G. L.: Antigens in immunity. VII. Analysis of immunological memory. Immunology9, 333 (1965).PubMedGoogle Scholar
  31. Plotz, P. H., Talal, N., Asofsky, R.: Assignment of direct and facilitated hemolytic plaques in mice to specific immunoglobulin classes. J. Immunol.100, 744 (1968).PubMedGoogle Scholar
  32. Richter, M., Haurowitz, F.: Continuous synthesis of antibody after primary immunization with protein antigens. J. Immunol.84, 420 (1960).Google Scholar
  33. —, Zimmermann, S., Haurowitz, F.: Relation of antibody titer to persistence of antigen. J. Immunol.94, 938 (1965).PubMedGoogle Scholar
  34. Sercarz, E., Byers, V. S.: The X-Y-Z-scheme of immunocyte maturation. III. Early IgM memory and the nature of the memory cell. J. Immunol.98, 836 (1967).PubMedGoogle Scholar
  35. Sterzl, J.: Factors determining the differentiation pathways of immunocompetent cells. Cold Spr. Harb. Symp. quant. Biol.32, 493 (1967).Google Scholar
  36. —, Riha, I.: Detection of cells producing 7S antibodies by the plaque technique. Nature (Lond.)208, 858 (1965).CrossRefGoogle Scholar
  37. Taliaferro, W. H., Taliaferro, L. G.: The dynamics of hemolysin formation in intact and splenectomized rabbits. J. infect. Dis.87, 37 (1950).PubMedGoogle Scholar
  38. Uhr, J. W., Baumann, J. B.: Antibody formation. I. The suppression of antibody formation by passively administered antibody. J. exp. Med.113, 935 (1961).PubMedCrossRefGoogle Scholar
  39. Weiler, E., Melletz, E. W., Breuninger-Peck, E.: Facilitation of immune hemolysin by an interaction between red cell-sensitizing antibody andγ-globulin allotype antibody. Proc. nat. Acad. Sci. (Wash.)54, 1310 (1965).CrossRefGoogle Scholar
  40. Wigzell, H.: Use of humoral or cellbound antibody to achieve depression of immunological reactivity. In: The immune response and its suppression. Antibiot. et Chemother. (Basel)15, 82 (1969).Google Scholar
  41. Wortis, H. H., Taylor, R. B., Dresser, D. W.: Antibody production studied by means of the LHG assay. I. The splenic response of CBA mice to sheep erythrocytes. Immunology11, 603 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • H. Finger
    • 1
  • P. Emmerling
    • 1
  • I. Fölmer
    • 1
  • M. Bartoschek
    • 1
  1. 1.Institut für Hygiene und Mikrobiologie der Universität WürzburgDeutschland

Personalised recommendations