Antonie van Leeuwenhoek

, Volume 33, Issue 1, pp 73–86 | Cite as

Iridescent material and the effect of iron on its production byPseudomonas aeruginosa

  • F. Wensinck
  • A. van Dalen
  • Martha Wedema


The nutritional conditions controlling iridescence inPseudomonas aeruginosa were studied using synthetic media solidified with agar. Iron and magnesium were growth-limiting factors in media solidified with dialysed agar. Iridescence only occurred on iron-deficient media and was not suppressed by adding Ca, Cu, Mn and Zn to these media. The ultraviolet absorption spectrum of the iridescent material was almost identical to the spectrum of the pyo I substances which are 2-alkyl-4-quinolinols.

The amount of material produced was inversely proportional to the iron content of the medium. Small amounts of material were produced by cells grown at levels of iron optimal for growth. Synthesis of 2-alkyl-4-quinolinol may be a normal metabolic process in the iridescent strains ofPseudomonas aeruginosa. It was enhanced by anthranilic acid and tryptophan; kynurenine and kynurenic acid had no effect. The results can be explained if it is assumed that the activity of iron-requiring enzymes catalizing the breakdown of tryptophan is reduced.

Even in the presence of anthranilic acid or tryptophan no material was produced by a non-iridescent strain.


Iron Magnesium Agar Absorption Spectrum Tryptophan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behrmann, E. J. 1962. Tryptophan metabolism inPseudomonas. Nature196:150–152PubMedGoogle Scholar
  2. Behrmann, E. J. andStella, E. J. 1963. Enrichment procedures for the isolation of tryptophan-oxidizing organisms. J. Bacteriol.85: 946–947.PubMedGoogle Scholar
  3. Behrmann, E. J. andTanaka, T. 1959. The quinoline pathway of tryptophan oxidation byPseudomonas: the initial steps in the oxidation of kynurenic acid. Biochem. Biophys. Res. Comm.1: 257–261.Google Scholar
  4. Berk, R. S. 1963. Nutritional studies on the “auto-plaque” phenomenon inPseudomonas aeruginosa. J. Bacteriol.86: 728–734.PubMedGoogle Scholar
  5. Berk, R. S. andGronkowski, L. 1964. Properties ofPseudomonas aeruginosa exhibiting self-lysis. Antonie van Leeuwenhoek30: 141–153.PubMedGoogle Scholar
  6. Cornforth, J. W. andJames, A. T. 1956. Structure of a naturally occurring antagonist of dihydrostreptomycin. Biochem. J.63: 124–130.PubMedGoogle Scholar
  7. van Dalen, A., Miedema, T., Wedema, M. andWensinck, F. 1964. Iridescence inPseudomonas aeruginosa and identification of the iridescent material. Antonie van Leeuwenhoek30: 335–336.Google Scholar
  8. Dickinson, L. andCodd, S. 1952. The bacteriophages ofPseudomonas pyocyanea. J. Gen. Microbiol.6: 1–13.PubMedGoogle Scholar
  9. Don, P. A. andvan den Ende, M. 1950. A preliminary study of the bacteriophages ofPseudomonas aeruginosa. J. Hyg.48: 196–214.Google Scholar
  10. Ewing, G. W. andSteck, E. A. 1946. Absorption spectra of heterocyclic compounds. I. Quinolinols and isoquinolinols. J. Am. Chem. Soc.68: 2181–2187.Google Scholar
  11. Hadley, P. 1924. Transmissible lysis ofBacillus pyocyaneus. J. Infect. Diseases34: 260–304.Google Scholar
  12. Hays, E. E., Wells, I. C., Katzman, P. A., Cain, C. K., Jacobs, F. A., Thayer, S. A., Doisy, E. A., Gaby, W. L., Roberts, E. C., Muir, R. D., Carroll, C. J., Jones, L. R. andWade, N. J. 1945. Antibiotic substances produced byPseudomonas aeruginosa. J. Biol. Chem.159: 725–750.Google Scholar
  13. Luckner, M. 1963. Über neue Arbeiten zur Biosynthese der Alkaloide. 3. Teil: Die Bildung von Verbindungen mit Chinolinringsystem. Die Pharmazie18: 93–107.PubMedGoogle Scholar
  14. Steck, E. A., Ewing, G. W. andNachod, F. C. 1949. Absorption spectra of heterocyclic compounds. V. Some substituted 4-quinolones. J. Am. Chem. Soc.71: 238–240.Google Scholar
  15. Tanaka, T. andKnox, W. E. 1959. The nature and mechanism of the tryptophan pyrrolase (peroxidase-oxidase) reaction ofPseudomonas and of rat liver. J. Biol. Chem.234: 1162–1170.PubMedGoogle Scholar
  16. Vogel, A. I. 1951. A textbook of quantitative inorganic analysis, 2nd ed., p. 645–647. Longmans, Green & Co., London.Google Scholar
  17. Waring, W. S. andWerkman, C. H. 1942. Growth of bacteria in an iron-free medium. Arch. Biochem.1: 303–310.Google Scholar
  18. Waring, W. S. andWerkman, C. H. 1943. Iron requirements of heterotrophic bacteria. Arch. Biochem.1: 425–433.Google Scholar
  19. Waring, W. S. andWerkman, C. H. 1944. Iron deficiency in bacterial metabolism. Arch. Biochem.4: 75–87.Google Scholar
  20. Warner, P. T. J. C. P. 1950. The iridescent phenomenon ofPs. pyocyanea. Brit. J. Exptl. Pathol.31: 242–257.Google Scholar
  21. Wells, I. C. 1952. Antibiotic substances produced byPseudomonas aeruginosa. Syntheses of pyo Ib, pyo Ic and pyo III. J. Biol. Chem.196: 331–340.PubMedGoogle Scholar

Copyright information

© Swets & Zeitlinger 1967

Authors and Affiliations

  • F. Wensinck
    • 1
  • A. van Dalen
    • 1
  • Martha Wedema
    • 1
  1. 1.Laboratory of Bacteriology and SerologyState UniversityGroningenThe Netherlands

Personalised recommendations