Histochemische Untersuchung der Wirkung von Pharmaka auf die Aufnahme vonα-Methylnoradrenalin in Noradrenalin- und Dopamin-Neuren bei der reserpinisierten Ratte

  • H. -P. Lorez
Article

Zusammenfassung

Die Hemmwirkung verschiedener Pharmaka auf die Aufnahme vonα-Methylnoradrenalin (MNA) in Katecholamin-Neuren wurde fluorescenz-histochemisch an der reserpinisierten Ratte in vivo untersucht. Geprüft wurden die Noradrenalin-Axone in Iris, Mesenterialvenen und Vas deferens sowie die Dopamin-Axone der Eminentia mediana des Hypothalamus. In den Noradrenalin-Neuren hemmen mit abnehmender Wirksamkeit folgende Substanzen: Desipramin, Guanethidin, Methylphenidat, Cocain, 1-(3-Methylaminopropyl)-dibenzo [b, e] bioyclo [2.2.2] octadien (34′276-Ba, ein neues Antidepressivum aus der Reihe der Dibenzo-bicyclo-octadiene) und Tripelennamin. In den Dopamin-Neuren hemmen von diesen Substanzen nur Methylphenidat, Cocain und Tripelennamin. Zwei weitere untersuchte Verbindungen, das Psychopharmakon Benzoctamin (ein Tranquillizer aus der Reihe der Dibenzo-bicyclo-octadiene) und der Monoaminoxydasehemmer N-methyl-N-(2-propinyl)-1-indanamin (11′739-Su) hemmen weder in den Noradrenalin- noch in den Dopamin-Neuren. Mögliche Beziehungen zwischen apparenter Aufnahmehemmung und Entleerung von MNA werden diskutiert.

Schlüsselwörter

Katecholamine Reserpinresistente Katecholamin-Aufnahme Hemmung der neuronalen Aufnahme von Katecholaminen Tubero-infundi-buläre Dopamin-Neuren Dibenzobicyclooctadien-Derivate 

Abkürzungen

NA

Noradrenalin

DA

Dopamin

MNA

α-Methylnor-adrenalin

Dopa

3,4-Dihydroxyphenylalanin

KA

Katecholamin(e)

ZNS

Zentralnervensystem

i.p.

intraperitoneal

i.v.

intravenös

Histochemical study of the effect of drugs on the uptake of α- methylnoradrenaline by noradrenaline and dopamine containing neurones in rats treated with reserpine

Summary

A number of drugs were tested in histochemical studies using a fluorescent technique in order to establish whether they inhibited the uptake ofα-methylnoradrenaline in catecholamine neurones in the reserpine-treated rat in vivo. The noradrenaline axons in the iris, mesenteric veins, and vas deferens were investigated, as well as the dopamine axons of the eminentia mediana of the hypothalamus. In the noradrenaline neurones an inhibitory action was exerted by the following substances (listed in descending order of effectiveness): desipramine, guanethidine, methylphenidate, cocaine, 1-(3-methylaminopropyl)-dibenzo [b, e] bicyclo [2.2.2] octadiene (34′276-Ba, a new antidepressive from the series of the dibenzo-bicyclo-octadienes), and tripelennamine. Of these substances only methylphenidate, cocaine, and tripelennamine exerted an inhibitory effect in the dopamine neurones. Two other compounds that were studied, the psycho-active drug benz-octamine (a tranquillizer from the series of the dibenzo-bicyclo-octadienes) and the monoamine oxidase inhibitor N-methyl-N-(2-propynyl)-1-indanamme (11′739-Su) did not exert an inhibitory effect either in the noradrenaline or in the dopamine neurones. Possible correlations between apparent inhibition of uptake and depletion ofα-methylnoradrenaline are discussed.

Key-words

Catecholamines Reserpine-resistant uptake of catecholamines Inhibition of neuronal uptake of catecholamines Tuberoinfundibular dopamine neurons Dibenzobicyclooctadien-derivates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bein, H. J., Maître, L.: Unveröffentlichte Resultate.Google Scholar
  2. 2.
    - Wilhelm, M.: Unveröffentlichte Resultate.Google Scholar
  3. 3.
    Blaschko, H., Richter, D., Schlossmann, H.: The oxidation of adrenaline and other amines. Biochem. J.31, 2187 (1937).PubMedGoogle Scholar
  4. 4.
    Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N. Å.: Failure of reserpine to deplete noradrenaline neurons ofα-methyl-noradrenaline formed fromα-methyl-dopa. Acta pharmacol. (Kbh.)22, 270 (1965).Google Scholar
  5. 5.
    —, Fuxe, K., Hamberger, B., Lindquist, M.: Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta physiol. scand.67, 481 (1966).PubMedGoogle Scholar
  6. 6.
    —, Lindquist, M., Fuxe, K., Hamberger, B.: The effect of (+)-amphetamine on various central and peripheral catecholamine-containing neurons. J. Pharm. Pharmacol.18, 128 (1966).PubMedGoogle Scholar
  7. 7.
    —, Lundborg, P., Stitzel, R., Waldeck, B.: Uptake, storage and release of H3-α-methyl-norepinephrine. J. Pharmacol. exp. Ther.158, 175 (1967).PubMedGoogle Scholar
  8. 8.
    Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J. Histochem. Cytochem.15, 65 (1967).Google Scholar
  9. 9.
    — —, Malmfors, T.: Factors affecting the quality and intensity of the fluorescence in the histochemical method of demonstration of catecholamines. Acta histochem. (Jena)25, 367 (1966).Google Scholar
  10. 10.
    —, Malmfors, T., Sachs, Ch.: Differences in the uptake of secondary catechol-amines by the adrenergic nerves. Acta physiol. scand.67, 358 (1966).PubMedGoogle Scholar
  11. 11.
    Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine-containing neurons in the central nervous system: I Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand.62, Suppl. 232 (1964).Google Scholar
  12. 12.
    Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand.56, Suppl. 197 (1962).Google Scholar
  13. 13.
    —, Hillarp, N.-Å., Thieme, G., Torp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem.10, 348 (1962).Google Scholar
  14. 14.
    Ferry, C. B.: The autonomic nervous system. Ann. Rev. Pharmacol.7, 185 (1967).PubMedCrossRefGoogle Scholar
  15. 15.
    Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. IV Distribution of monoamine nerve terminals in the central nervous system. Acta physiol. scand.64, Suppl. 247 (1965).Google Scholar
  16. 16.
    —, Hamberger, B., Malmfors, T.: Inhibition of amine uptake in tubero-in-fundibular dopamine neurons and in catecholamine cell bodies of the area postrema. J. Pharm. Pharmacol.18, 543 (1966).PubMedGoogle Scholar
  17. 17.
    — — —: The effect of drugs on accumulation of monoamines in tubero-in-fundibular dopamine neurons. Europ. J. Pharmacol.1, 334 (1967).CrossRefGoogle Scholar
  18. 18.
    —, Hillarp, N.-Å.: Uptake of l-dopa and noradrenaline by central catecholamine neurons. Life Sci.3, 1403 (1964).PubMedCrossRefGoogle Scholar
  19. 19.
    —, Hökfelt, T.: Further evidence for the existence of tubero-infundibular dopamine neurons. Acta physiol. scand.66, 245 (1966).PubMedGoogle Scholar
  20. 20.
    Gillespie, J. S., Kirpekar, S. M.: The inactivation of infused noradrenaline by the cat spleen. J. Physiol. (Lond.)176, 205 (1965).Google Scholar
  21. 21.
    Häggendal, J., Hamberger, B.: Quantitative in vitro studies on noradrenaline uptake and its inhibition by amphetamine, desipramine, and chlorpromazine. Acta physiol. scand.70, 277 (1967).PubMedGoogle Scholar
  22. 22.
    Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. A histochemical study. Acta physiol. scand.71, Suppl. 295 (1967).Google Scholar
  23. 23.
    —, Malmfors, T.: Uptake and release ofα-methylnoradrenaline in vitro after reserpine pretreatment. A histochemical study. Acta physiol. scand.70, 412 (1967).PubMedGoogle Scholar
  24. 24.
    —, Masuoka, D.: Localization of catecholamine uptake in rat brain slices. Acta Pharmacol. Toxicol.22, 363 (1965).CrossRefGoogle Scholar
  25. 25.
    Hertting, G., Axelrod, J., Whitby, L. G.: Effect of drugs on the uptake and metabolism of H3-norepinephrine. J. Pharmacol. exp. Ther.134, 146 (1961).Google Scholar
  26. 26.
    Hillarp, N.-Å, Malmfors, T.: Reserpine and cocaine blocking of the uptake and storage mechanisms in adrenergic nerves. Life Sci.3, 703 (1964).PubMedCrossRefGoogle Scholar
  27. 27.
    Isaac, L., Goth, A.: Interaction of antihistaminics with norepinephrine uptake: A cocaine-like effect. Life Sci.4, 1899 (1965).PubMedCrossRefGoogle Scholar
  28. 28.
    Iversen, L. L.: The uptake of noradrenaline by the isolated perfused rat heart. Brit. J. Pharmacol.21, 523 (1963).PubMedGoogle Scholar
  29. 29.
    —: The inhibition of noradrenaline uptake by drugs. Advanc. Drug. Res.2, 5 (1965).Google Scholar
  30. 30.
    —: The uptake and storage of noradrenaline in sympathetic nerves. Cambridge: University Press 1967.Google Scholar
  31. 31.
    Johnson, G. L., Kahn, J. B., jr.: Cocaine and antihistaminic compounds: comparison of effects of some cardiovascular actions of norepinephrine, tyramine and bretylium. J. Pharmacol. exp. Ther.152, 458 (1966).PubMedGoogle Scholar
  32. 32.
    Jonsson, G.: Fluorescence methods for the histochemical demonstration of monoamines. VII. Fluorescence studies on biogenio monoamines and related compounds condensed with formaldehyde. Histochemie8, 288 (1967).PubMedCrossRefGoogle Scholar
  33. 33.
    Lichtensteiger, W., Langemann, H.: Uptake of exogenous catecholamines by monoamine-containing neurons of the central nervous system: uptake of catecholamines by arcuato-infundibular neurons. J. Pharmacol. exp. Ther.151, 400 (1966).PubMedGoogle Scholar
  34. 34.
    —, Mutzner, U., Langemann, H.: Uptake of 5-hydroxytryptamine and 5-hydroxy-tryptophan by neurons of the central nervous system normally containing catecholamines. J. Neurochem.14, 489 (1967).PubMedCrossRefGoogle Scholar
  35. 35.
    Lundborg, P.: Studies on the uptake and subcellular distribution of catechol-amines and theirα-methylated analogues. Acta physiol. scand.72, Suppl. 302 (1967).Google Scholar
  36. 36.
    Maître, L.: Monoamine oxidase inhibiting properties of Su-11′739 in the rat. Comparison with pargyline, tranylcypromine and iproniazid. J. Pharmacol. exp. Ther.157, 81 (1967).PubMedGoogle Scholar
  37. 37.
    Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta physiol. scand.64, Suppl. 248 (1965).Google Scholar
  38. 38.
    —: Fluorescent histochemical studies on the uptake, storage, and release of catecholamines. Amer. Heart Ass. Monograph No.17, III, 25 (1967).Google Scholar
  39. 39.
    Maxwell, R. A.: Concerning the mechanism of action of methylphenidate on the responses of rabbit vascular tissue to norepinephrine. J. Pharmacol. exp. Ther.147, 289 (1965).PubMedGoogle Scholar
  40. 40.
    —, Sylwestrowicz, H. D., Holland, R., Schneider, F., Daniel, A. J.: Some actions of methylphenidate on the vascular system, arterial tissue and the nictitating membrane. J. Pharmacol. exp. Ther.131, 355 (1961).PubMedGoogle Scholar
  41. 41.
    Montanari, R., Costa, E., Beaven, M. A., Brodie, B. B.: Turnover rates of norepinephrine in hearts of intact mice, rats, and guinea pigs using tritiated norepinephrine. Life Sci.2, 232 (1963).CrossRefGoogle Scholar
  42. 42.
    Povalski, H. J., Goldsmith, E. D.: Effect of methylphenidate on cardiovascular ctions of pressor amines. Proc. Soc. exp. Biol. (N.Y.)101, 717 (1959).Google Scholar
  43. 43.
    Rinne, U. K., Sonninen, V.: The occurrence of dopamine and noradrenaline in the tubero-hypophysial system. Experientia (Basel)24, 177 (1968).Google Scholar
  44. 44.
    Ritzén, M.: Quantitative fluorescence microspectrophotometry of catechol-amine-formaldehyde products. Model experiments. Exp. Cell. Res.44, 505 (1966).PubMedCrossRefGoogle Scholar
  45. 45.
    Sjöstrand, N. O.: The adrenergic innervation of the vas deferens and the accessory male genital glands. An experimental and comparative study of its anatomical and functional organization in some mammals, including the presence of adrenaline and chromaffin cells in these organs. Acta physiol. scand.65, Suppl. 257 (1965).Google Scholar
  46. 46.
    Sjöstrand, N. O., Swedin, G.: Effect of reserpine on the noradrenaline content of the vas deferens and the seminal vesicle compared with the submaxillary gland and the heart of the rat. Acta physiol. scand.72, 370 (1968).PubMedCrossRefGoogle Scholar
  47. 47.
    Spector, S., Melmon, K., Sjoerdsma, A.: Evidence for rapid turnover of norepinephrine in rat heart and brain. Proc. Soc. exp. Biol. (N.Y.)111, 79 (1962).Google Scholar
  48. 48.
    Udenfriend, S., Zaltzman-Nirenberg, P.: Norepinephrine and 3,4-dihydroxyphenethylamine turnover in guinea pig brain in vivo. Science142, 394 (1963).PubMedCrossRefGoogle Scholar
  49. 49.
    Van Orden, L. S., Bensch, K. G., Giarman, N. J.: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. II. Extravesicular norepinephrine. J. Pharmacol. exp. Ther.155, 428 (1967).PubMedGoogle Scholar
  50. 50.
    —, Bloom, F. E., Barrnett, R. J., Giarman, N. J.: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. I. Participation of granular vesicles. J. Pharmacol. exp. Ther.154, 185 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • H. -P. Lorez
    • 1
  1. 1.Pharmazeutische AbteilungForschungslaboratorien der CIBA-Aktiengesellschaft BaselSchweiz

Personalised recommendations