Advertisement

Fluorescenzhistochemische Untersuchung zum Verhalten der Catecholamine in der Nierenrinde beim experimentellen renalen Hypertonus der Ratte

  • Bodo Henningsen
Kurze Mitteilung

Zusammenfassung

Mit fluorescenzhistochemischer Methodik wurde das Verhalten der Catecholamine in der Nierenrinde beim experimentellen renalen Hypertonus der Ratte 5 Monate nach Stenosierung der rechten A. renalis untersucht. Auf der Stenoseseite ist die noradrenalinspezifische Fluorescenz in den postganglionären adrenergen Fasern der Aa. interlobulares, Arteriolae afferentes und efferentes gegenüber normalen Kontrollen verstärkt, auf der Kontralateralseite auffallend vermindert. Die Befunde werden als Ausdruck der Reaktion des autonomen Nervensystems auf die veränderte hämodynamische Situation gedeutet. Auf mögliche Verbindungen zum Renin-Angiotensin-System wird hingewiesen.

Schlüsselwörter

Catecholamine Fluorescenzhistochemie Hypertonus Nierenarterienstenose 

Renal cortex catecholamines in experimental renal hypertension of the rat. A fluorescence-histochemical study

Summary

5 months after stenosis of the right renal artery renal cortex catecholamines of hypertensive rats were studied by a fluorescence-histochemical method. Noradrenaline-specific fluorescence of postganglionic adrenergic nerve fibres in the Aa. interlobulares, Arteriolae afferentes and efferentes of the kidney with renal artery stenosis is brighter when compared with normal controls; in the contralateral side the specific fluorescence is strikingly diminished. These findings are interpreted as an expression of the autonomous nerve system reaction to hemodynamic change. Possible relations to the renin-angiotensin-system are discussed.

Key-words

Catecholamines Fluorescence-histochemistry Hypertension Stenosis of renal artery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Brod, J., S. W. Hoobler, andJ. M. Ledingham: Hemodynamics. InI. H. Page andJ. W. McCubbin: Renal Hypertension, pp. 350–370. Chicago: Year Book Med. Publ. Inc. 1968.Google Scholar
  2. Bunag, R. D., I. H. Page, andJ. W. McCubbin: Neural stimulation of release of renin. Circulat. Res.19, 851–858 (1966).PubMedGoogle Scholar
  3. Euler, U. S. v., S.Rosell, and B.Uvnäs: Mechanisms of Release of biogenic amines. Sympos. 1965, Stockholm Wennergren center, Intern. Sympos. Series Vol. 5.Google Scholar
  4. Falck, B., N. A. Hillarp, G. Thieme, andA. Torp: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem.10, 348–354 (1962).Google Scholar
  5. Goldblatt, H., andJ. R. Kahn: Experimental hypertension, Constriction of the aorta at various levels. J. Amer. med. Ass.110, 686 (1938).Google Scholar
  6. — —, andR. F. Hanzal: Studies on experimental hypertension. IX. The effect on blood pressure of constriction of the abdominal aorta above und below the site of origin of both main renal arteries. J. exp. Med.71, 175 (1940).CrossRefGoogle Scholar
  7. Heene, R.: Histochemischer Nachweis von Katecholaminen und 5-Hydroxytryptamin am Kryostatschnitt. Histochemie14, 324–327 (1968).PubMedCrossRefGoogle Scholar
  8. Kaneko, Y., T.Takeda, K.Nakajima, M.Ishii, and H.Ueda: Effect of ganglion blocking agents on renin release during reduction of arterial pressure in man. Zit. n. I. H.Page and J. W.McCubbin: Renal hypertension, p. 111 (1967).Google Scholar
  9. Mason, M. F., C. S. Robinson, andA. Blalock: Studies on the renal arterial pressure and the metabolism of kidney tissue in experimental hypertension. J. exp. Med.72, 289 (1940).CrossRefGoogle Scholar
  10. McCubbin, J. W., R. S. de Moura, I. H. Page, andF. Olmsted: Arterial hypertension elicited by subpressor amounts of angiotensin. Science149, 1394 (1965).PubMedCrossRefGoogle Scholar
  11. —, andI. H. Page: Renal pressor system and neurogenic control of arterial pressure. Circulat. Res.12, 553–559 (1963).Google Scholar
  12. McGiff, J. C., andT. M. Fasy: The relationship of the renal vascular activity of angiotensin II to the autonomic nervous system. J. clin. Invest.44, 1911–1923 (1965).PubMedCrossRefGoogle Scholar
  13. Stjärne, L.: Studies of catecholamine uptake, storage and release mechanisms. Acta physiol. scand.62, Suppl. 228, 5–97 (1964).Google Scholar
  14. Ueda, H., H. Tagawa, M. Ishii, andY. Kaneko: Effect on renal denervation on release and content of renin in anesthetized dogs. Jap. Heart J.8, 156 (1967).PubMedGoogle Scholar
  15. Wollheim, E., u.J. Moeller: Hypertonie-Hypotonie. In: Handbuch d. Inn. Med., Bd. IX/5, S. 627–628. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  16. Yu, R., andC. J. Dickinson: Neurogenic effects of angiotensin. Lancet1965 II, 1276–1277.CrossRefGoogle Scholar
  17. Zussman, W. V.: Renal catecholamine stores following experimental hypertension in the rat. Angiology18, 741–751 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Bodo Henningsen
    • 1
    • 2
  1. 1.Medizinische Universitätsklinik WürzburgDeutschland
  2. 2.Anatomisches Institut der Universität WürzburgDeutschland

Personalised recommendations