Functional vision with hydrogel versus PMMA lens implants

  • Herbert Weghaupt
  • Rupert Menapace
  • Andreas Wedrich
Clinical Investigations


As a particular test of visual function, contrast sensitivity reveals optical properties of Iogel pHema lenses in comparison to poly(methyl metacrylate) implants (PMMA). Sixteen patients with a hydrogel posterior chamber lens in one eye and a PMMA posterior chamber lens in the other were examined by means of contrast sensitivity measurements. Six stationary, vertical, sinusoidal modulated gratings with spatial frequencies of 0.5, 1, 3, 6, 11.4 and 22.8 cycles/degree were presented. Results of the two different implants were analyzed by a pairedt-test. There was no significant statistical difference between the two types of lenses for any of the gratings presented. Despite different features like material, refractive index, design and UV-absorbing additive, there seems to be no difference between lenses made of hydrogel and those made of PMMA material with regard to functional vision as evaluated by contrast sensitivity testing.


Methyl Refractive Index Optical Property Statistical Difference PMMA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amon M, Menapace R (1991) Cellular invasion on hydrogel and poly(methyl methacrylate) implants. An in vivo study. J Cataract Refract Surg 17:774–779PubMedGoogle Scholar
  2. 2.
    Arden GB (1978) The importance of measuring contrast sensitivity in cases of visual disturbance. Br J Ophthalmol 62:198–209PubMedGoogle Scholar
  3. 3.
    Arundale K (1978) An investigation into the variation of human contrast sensitivity with age and ocular pathology. Br J Ophthalmol 62:213–215PubMedGoogle Scholar
  4. 4.
    Aust W (1986) Streulicht bei implantierten Kunststofflinsen im Modellversuch. Klin Monatsbl Augenheilkd 188:69–71PubMedGoogle Scholar
  5. 5.
    Aust W, Stärk M (1985) Dämmerungssehvermögen und Blendungsempfindlichkeit nach Implantation von Vorderkammerund Hinterkammerlinsen. Fortschr Ophthalmol 82:179–180PubMedGoogle Scholar
  6. 6.
    Barrett GD (1987) Intraocular lens calculation formulas for new intraocular lens implants. J Cataract Refract Surg 13:389–396PubMedGoogle Scholar
  7. 7.
    Bucher PJM (1990) Anterior chamber depth with sulcus and capsular bag places IOGEL lenses. J Cataract Refract Surg 16:737–740PubMedGoogle Scholar
  8. 8.
    Fukaya Y, Hara T, Hara T, Iwata S (1988) Light scattering caused by cells on the intraocular lens. J Cataract Refract Surg 14:396–399PubMedGoogle Scholar
  9. 9.
    Furuskog P, Nilsson BY (1988) Contrast sensitivity in patients with posterior chamber intraocular lens implants. Acta Ophthalmol (Copenh) 66:438–444Google Scholar
  10. 10.
    Hess R, Woo GC, White PD (1985) Contrast attenuation characteristics of iris clipped intraocular lens implants in situ. Br J Ophthalmol 69:129–135PubMedGoogle Scholar
  11. 11.
    Howe JW, Mitchell KW, Mahabaleswara M, Abdel-Khalek MN (1986) Visual evoked potential latency and contrast sensitivity in patients with posterior chamber intraocular lens implants. Br J Ophthalmol 70:890–894PubMedGoogle Scholar
  12. 12.
    Jindra L-F, Zemon V (1989) Contrast sensitivity testing: a more complete assessment of vision. J Cataract Refract Surg 15:141–148PubMedGoogle Scholar
  13. 13.
    Knorz MC, Legier U, Seibert V (1991) Evaluation of contrast sensitivity following implantation of IOGEI lenses. Eur J Implant Refract Surg 3:27–29Google Scholar
  14. 14.
    Koch DD, Liu JF (1990) Survey of the clinical use of glare and contrast sensitivity testing. J Cataract Refract Surg 16:707–711PubMedGoogle Scholar
  15. 15.
    Marmor MF, Gawande A (1988) Effect of visual blur on contrast sensitivity. Ophthalmology 95:139–143PubMedGoogle Scholar
  16. 16.
    Menapace R, Skorpik C (1989) Technik der Kleinschnitt-Implantation und Kapselsackfixation für die flexible pHema-Linse Iogel PC-12. In: Freyler H, Skoprik Ch, Grasl M (eds) 3. Kongress der DGII. Springer, Berlin Heidelberg New York, pp 130–138Google Scholar
  17. 17.
    Menapace R, Skorpik C, Juchem M, Scheidel W, Schranz R (1989) Evaluation of the first 60 cases of poly HEMA posterior chamber lenses implanted in the sulcus. J Cataract Refract Surg 15:264–271PubMedGoogle Scholar
  18. 18.
    Menapace R, Skorpik C, Wedrich A (1990) Evaluation of 150 consecutive cases of poly HEMA posterior chamber lenses implanted in the bag using a small-incision technique. J Cataract Refract Surg 16:567–577PubMedGoogle Scholar
  19. 19.
    Menapace R, Radax U, Amon M, Papapanos P (1991) Kleinschnitt-Kataraktchirurgie ohne Naht: Bericht über 100 konsekutive Fälle. Spekt Augenheilkd 5:135–140Google Scholar
  20. 20.
    Nadler DJ, Jaffe NS, Clayman HM, Jaffe MS, Luscombe SM (1984) Glare disability in eyes with intraocular lenses. Am J Ophthalmol 97:43–47PubMedGoogle Scholar
  21. 21.
    Owsley C, Sloane M (1987) Contrast sensitivity, acuity, and the perception of ‘real-word’ targets. Br J Ophthalmol 71:791–796PubMedGoogle Scholar
  22. 22.
    Packard RBS, Garner A, Arnott EJ (1981) Poly-HEMA as a material for intraocular lens implantation: a preliminary report. Br J Ophthalmol 65:585–587PubMedGoogle Scholar
  23. 23.
    Skelnik DL, Lindstrom RL, Allarakhia L, Tamulinas C, Lorenzetti OJ (1987) Neodymium: YAG laser interaction with Alcon IOGEL hydrogel intraocular lenses: an in vitro toxicity assay. J Cataract Refract Surg 13:662–668PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Herbert Weghaupt
    • 1
  • Rupert Menapace
    • 1
  • Andreas Wedrich
    • 1
  1. 1.I. Universitäts-AugenklinikWienAustria

Personalised recommendations