Skip to main content
Log in

Seeing with the visual cortex

  • Editorial
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

Abstract

A short analysis of the input-output organization of the primary visual cortical areas in the cat and monkey is followed by a description of the salient microelectrophysiological properties of retino-geniculo-cortical system neurons.

It is concluded that a strict hierarchical model of cortical processing of visual information is no longer tenable.

Sommario

Dopo una succinta analisi della organizzazione afferente ed efferente delle aree corticali visive primarie del gatto e della scimmia, l'autore descrive le principali proprietà funzionali dei neuroni del sistema visivo retino-genicolo-corticale.

Sulla base dei dati riferiti viene considerato non più proponibile il modello gerarchico della analisi corticale delle informazioni sensoriali visive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Albus K.:14 C-deoxyglucose mapping of oriention subunits in the cat's visual cortical areas. Exp. Brain Res., 37: 609–613, 1979.

    Article  PubMed  Google Scholar 

  2. Albus K., Donate-Oliver F.:Cells of origin of the occipito-pontine projection in the cat: functional properties and intracortical location. Exp. Brain Res., 28: 167–174, 1977.

    Article  PubMed  Google Scholar 

  3. Brodmann K.:Beitrage zur histologische, Localisation der Grosshirnrinde. Dritte Mitteilung. Die Rindenfelder niederen Affen. J. Psychol. Neurol., 4: 177–226, 1905.

    Google Scholar 

  4. Bullier J., Henry G.H.:Ordinal position of neurons in cat striate cortex. J. Neurophysiol., 42: 1251–1263, 1979a.

    PubMed  Google Scholar 

  5. Bullier J., Henry G.H.:Neural path taken by afferent streams in striate cortex of the cat. J. Neurophysiol. 42: 1264–1270, 1979b.

    PubMed  Google Scholar 

  6. Bullier J., Henry G.H.:Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. J. Neurophysiol. 42: 1271–1281, 1979c.

    PubMed  Google Scholar 

  7. Bullier J., Norton T.T.:X and Y relay cells in cat lateral geniculate nucleus: Quantitative analysis of the receptive-field properties and classification. J. Neurophysiol. 42: 244–238, 1979.

    PubMed  Google Scholar 

  8. Cajal S.R.y:Histologie du système nerveux de l'homme et des vertéblés. Paris, A. Maloine, 1911.

    Google Scholar 

  9. Camarda R.M.:Quantitative analysis of simple receptive fields in area 18 of the cat. Proc. Aust. Physiol. Pharmacol. Soc., 9, 61P, 1978.

  10. Camarda R.M.:Hypercomplex cell types in area 18 of the cat. Exp. Brain Res., 36: 191–194, 1979.

    Article  PubMed  Google Scholar 

  11. Camarda R.M.:Il Sistema visivo retino-collicolo-corticale. Piccin ed., Padova, 1982.

  12. Camarda R.M.:Simple cells in area 18 of the cat. a quantitative analysis. Submitted to J. Physiol. (London), 1984.

  13. Camarda R.M.:A comparison of the receptive field types and laminar distribution of cells in areas 17 and 18 of the cat. Manuscript in preparation, 1984.

  14. Camarda R.M.,Harvey A.R.:An examination of the hypercomplex property in the cat parastriate cortex. Proc. Aust. Physiol. Pharmacol., 9, 191P, 1978.

  15. Camarda R., Rizzolatti G.:Receptive fields of the superficial layers of the cat's area 17. Exp. Brain Res. 24: 423–427, 1976.

    Article  PubMed  Google Scholar 

  16. Camarda R.,Peterhans E.,Bishop P.O.:B-cells in the cat striate cortex. J. Physiol. London, submitted., 1984.

  17. Campbell A.W.:Histological studies on the localization of cerebral function. Cambridge University Press., Cambridge, 1905.

    Google Scholar 

  18. Clark W. E. Le Gross:A morphological study of the lateral geniculate body. Br. J. Ophthalmol., 16: 264–284, 1932.

    Google Scholar 

  19. Colwell S.A.:Thalamocortical corticothalamic reciprocity: A combined anterograde retrograde tracer technique. Brain Res., 92: 443–449, 1975.

    Article  PubMed  Google Scholar 

  20. Dreher B.:Hypercomplex cells in the cat's striate cortex. Invest. Ophthalmol., 11: 355–356, 1972.

    PubMed  Google Scholar 

  21. Ferster D.,LeVay S.:The axonal arborization of lateral geniculate neurons in the striate cortex of the cat. J. comp. Neurol. 1982; 923–944, 1978.

  22. Fink R.P., Heimer L.:Two methods for selective inpregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res., 4: 369–374, 1967.

    Article  PubMed  Google Scholar 

  23. Fleschsig P.:Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet, 2: 1027–1029, 1901.

    Google Scholar 

  24. Garey L.J., Powell T.P.S.:An experimental study of the termination of the lateral geniculate-cortical pathway in the cat and monkey. Proc. R. Soc. B 179: 41–63; 1971.

    Google Scholar 

  25. Gilbert C.D.:Laminar differences in receptive field properties of cells in cat primary visual cortex. J. Physiol. Lond., 268: 391–421, 1977.

    PubMed  Google Scholar 

  26. Gilbert C.D., Wiesel T.N.:Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature, 280: 120–125, 1979.

    Article  PubMed  Google Scholar 

  27. Glichestein M., King R., Stein J.:Visual input to the pontine nuclei. Science, 178: 1110–1111, 1972.

    PubMed  Google Scholar 

  28. Grafstein B.:Transneuronal transfer of radioactivity in the central nervous system. Science, 172: 177–179, 1971.

    PubMed  Google Scholar 

  29. Harvey A.R.:A physiological analysis of subcortical and commissural projections of area 17 and 18 of the cat. J. Physiol., 302, 507–534, 1980.

    PubMed  Google Scholar 

  30. Hendrickson A.E.;Wilson J.R.:A difference in 14 C deoxyglucose autoradiographic patterns in striate cortex between Macaca and Saimiri monkeys following monocular stimulation. Brain Res., 1970: 353–358, 1978.

    Google Scholar 

  31. Henry G.H., Lund J.S., Harvey A.R.:Cells of the striate cortex projecting to the Clare-Bishop area of the cat. Brain Res., 151: 154–158, 1978.

    Article  PubMed  Google Scholar 

  32. Henry G.H., Harvey A.R., Lund J.S.:The afferent connections and laminar distribution of cells in the cat striate cortex. J. comp. Neurol., 187: 725–744, 1979.

    Article  PubMed  Google Scholar 

  33. Hoffmann K.P., Stone J.:Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res., 32: 460–466, 1971.

    Article  PubMed  Google Scholar 

  34. Höllander H., Vanegas H.:The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish peroxidase. J. comp.; Neurol., 173: 519–536, 1977.

    Google Scholar 

  35. Hickey T.L., Guillery R.W.:An autoradiographic study of retinogeniculate pathway in the cat and fox. J. comp. Neurol. 156: 239–254, 1974.

    Article  PubMed  Google Scholar 

  36. Hubel D.H., Wiesel T.N.:Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. Lond., 160: 106–154, 1962.

    PubMed  Google Scholar 

  37. Hubel D.H., Wiesel T.N.:Shape and arrangement of columns in cat's striate cortex. J. Physiol., Lond., 165: 559–568, 1963.

    Google Scholar 

  38. Hubel D.H., Wiesel T.N.:Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28: 229–289, 1965.

    PubMed  Google Scholar 

  39. Hubel D.H., Wiesel T.N.:Receptive fields and functional architecture of monkey striate cortex. J. Physiol., Lond. 195: 215–243, 1968.

    Google Scholar 

  40. Hubel D.H., Wiesel T.N.:Laminar and columnar distribution of geniculo-cortical fibers in macaque monkey.J. comp. Neurol., 146:421–450, 1972.

    Article  PubMed  Google Scholar 

  41. Hubel D.H., Wiesel T.N.:Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. comp. Neurol., 158: 267–294, 1974.

    Article  PubMed  Google Scholar 

  42. Hubel D.H., Wiesel T.N.:Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond., B 198: 1–59, 1977.

    Google Scholar 

  43. Hubel D.H., Wiesel T.N., Stryker M.P.:Anatomical demonstration of orientation columns in macaque monkey. J. comp. Neurol., 177: 361–380, 1978.

    Article  PubMed  Google Scholar 

  44. Kaas J.H., Huerta M.F., Weber J.T., Harting J.K.:Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J. comp. Neurol. 182: 517–554, 1978.

    Article  PubMed  Google Scholar 

  45. Kato H., Bishop P.O, Orban G.A.:Hypercomplex and simple complex cell classification in cat striate cortex. J. Neurophysiol., 41: 1071–1095, 1978.

    PubMed  Google Scholar 

  46. Kelly J.P., Van Essen D.C.:Cell structure and function in the visual cortex of the cat. J. Physiol., Lond., 238: 515–547, 1974.

    Google Scholar 

  47. Kennedy C., Des Rosiers M., Sokoloff L., Reivich M., Jehle J.:The ocular dominance columns of the striate cortex as studied by the deoxyglucose method for measurement of local cerebral glucose utilization. Trans. Am. Neurol. Ass., 100: 74–77, 1975.

    Google Scholar 

  48. Kennedy C., DesRosiers M., Sakurada O., Shinohara M., Reivichm, Jehle J.W., Sokoloff L.:Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic 14 C deoxyglucose technique. Proc. Natl. Acad. Sci. (USA) 73: 4230–4234, 1976.

    Google Scholar 

  49. Kristensson K., Olsson Y.:Retrograde axonal transport of protein. Brain Res., 29: 363–365, 1971.

    Article  PubMed  Google Scholar 

  50. Kuffler S.W.:Discharge patterns and functional organization of mammalian retina. J. Neurophysiol., 16: 37–68, 1953.

    PubMed  Google Scholar 

  51. Lasek R., Joseph B.S., Whitlock D.G.:Evaluation of a radioautographic neuroanatomic tracing method. Brain Res. 8: 319–336, 1968.

    Article  PubMed  Google Scholar 

  52. Lennie P.:Parallel visual pathways: a review Vision Res. 20: 561–594, 1980.

    Article  PubMed  Google Scholar 

  53. LaVail J.H., LaVail M.M.:Retrograde axonal transport in the central nervous system. Science, 176: 1416–1417, 1972.

    PubMed  Google Scholar 

  54. LaVail J.H., Winston K.R., Tish A.:A method based on retrograde intraaxonal transport of protein for identification of cell bodies of origin of axons terminating within the CNS. Brain Res., 58: 470–477, 1973.

    Article  PubMed  Google Scholar 

  55. LeVay S., Gilbert C.D.:Laminar patterns of geniculocortical projection in the cat. Brain Res., 113: 1–19, 1976.

    Article  PubMed  Google Scholar 

  56. Levick W.R.:Form and function of cat retinal ganglion cells. Nature, 254: 659–662, 1975.

    Article  PubMed  Google Scholar 

  57. Lorente De No R.:Cerebral cortex: architecture, intracortical connections, motor projections.In:Physiology of the Nervous System, (Fulton J.F. ed.), London: Oxford University Press, 1949.

    Google Scholar 

  58. Lund J.S.:Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J. comp. Neurol., 147: 455–496, 1973.

    Article  PubMed  Google Scholar 

  59. Lund J.S., Boothe R.G.:Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. J. comp. Neurol. 159: 305–334, 1975.

    Article  Google Scholar 

  60. Lund J.S., Henry G.H., Macqueen C.L., Harvey A.R.:Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. J. comp. Neurol., 184: 599–618, 1979.

    Article  PubMed  Google Scholar 

  61. Lund J.S., Lund R.D., Hendrickson A.E., Bunt A.H., Fuchs A.F.:The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. comp. Neurol., 164: 287–304, 1975.

    Article  Google Scholar 

  62. Maffei L., Fiorentini A.:Retinogeniculate convergence and analysis of contrast. J. Neurophysiol., 35: 65–79, 1972.

    PubMed  Google Scholar 

  63. Mountcastle V.B.:Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol., 20: 408–434, 1957.

    PubMed  Google Scholar 

  64. Nauta W.J.H.:Uber die sogenanute terminale degeneration im zentralnervensystem und ihre darstellung durch silberimpragnation. Arch. Neurol. Psychiat. 66: 353–376, 1950 cited in Nauta W.J.H. and Ebbesson S.O.E. (eds): Contemporary research methods in Neuroanatomy. Springer-Verlag, New York, 1970.

    Google Scholar 

  65. Nauta W.J.H., Gygax P.A.:Silver impregnation of degenerating axon terminals in the central nervous system: 1) technic, 2, chemical notes. Stain Technol, 26: 5–11, 1951.

    PubMed  Google Scholar 

  66. Nauta W.J.H., Gygax P.A.:Silver impregnation of degenerating axons in the central nervous system: a modified technique Stain Technol, 29: 91–93, 1954.

    PubMed  Google Scholar 

  67. O'Leary J.L.:Structure of area striata of the cat. J. comp. Neurol., 75: 131–161, 1941.

    Article  Google Scholar 

  68. Palmer L.A., Rosenquist A.C.:Visual receptive fields of single striate cortical units projecting to the superior colliculus in the cat. Brain Res., 67: 27–42, 1974.

    Article  PubMed  Google Scholar 

  69. Polyack S.:The retina. Chicago: University of Chicago Press, 1941.

    Google Scholar 

  70. Polyack S.:The vertebrate visual system. Chicago; University of Chicago Press, 1957.

    Google Scholar 

  71. Rosenquist A.C., Edwards S.B., Palmer L.A.:An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and posterior nucleus in the cat. Brain Res., 80: 71–93, 1974.

    Article  PubMed  Google Scholar 

  72. Schoppmann A., Stryker M.P.:Physiological evidence that the 2-deoxyglucose method reveals orientation columns in cat visual cortex. Nature, Lond., 293: 574–576, 1981.

    Google Scholar 

  73. Shatz C.J., Lindstrom S., Wiesel T.N.:The distributions of afferents representing the right and left eyes in the cat's visual cortex. Brain Res., 131: 103–116, 1977.

    Article  PubMed  Google Scholar 

  74. Sholl D.A.:The organization of the visual cortex in the cat. J. Anat., 89: 33–46, 1955.

    PubMed  Google Scholar 

  75. Singer W., Tretter F., Cynader M.:Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. J. Neurophysiol., 38: 1000–1098, 1975.

    Google Scholar 

  76. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M.H., Patlak C.S. Pettigrew K.D., Sakurada O., Shinohara M.:The deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal value in the conscious and anesthetized albino rat. J. Neurochem., 28: 897–916, 1977.

    PubMed  Google Scholar 

  77. Stone J., Dreher B.:Projection of X- and Y-cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. J. Neurophysiol. 36: 551–567, 1973.

    PubMed  Google Scholar 

  78. Tömböl T., Hajdu F., Somogyi G.:Identification of the Golgi picture of the layer VI corticogeniculate projection neurons Exp. Brain Res., 24: 107–110, 1976.

    Google Scholar 

  79. Wiesel T.N., Hubel D.H., Lam D.M.K.:Autoradiographic demonstration of ocular-dominance columns in monkey striate cortex by means of transneuronal transport. Brain Res. 79: 273–279, 1974.

    Article  PubMed  Google Scholar 

  80. Yukie M., Iwai E.:Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in Macaque Monkey. J. comp. Neurol. 201: 81–97, 1981.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camarda, R.M. Seeing with the visual cortex. Ital J Neuro Sci 5, 133–153 (1984). https://doi.org/10.1007/BF02043216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02043216

Key words

Navigation