Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 173, Issue 2, pp 395–407 | Cite as

GC-MS and GC-FTIR identification of volatile radiolytic products in water-nitrobenzene-carbon tetrachloride two phase systems

  • J. Kuruc
  • M. K. Sahoo
Article

Abstract

Various volatile products formed in the γ-radiolysis of water-nitrobenzene-carbon tetrachloride two phase systems have been identified using GC-MS and GC-FTIR systems. The conditions for the separation of the products are described in detail. It was found that product formation is dependent on the composition of the systems. In case when the volume ratio of carbon tetrachloride is higher, chlorobenzene appears to be one of the major radiolytic products. This means that substitution of the nitro group by chlorine atom occurs in the presence of water. Substitution of the nitro group and hydrogen atom by chlorine atom and/or HO free radical is also observed, depending on the composition of the mixture. Formation of phenyl isocyanate is proposed to be the result of interaction of dichlorocarbene and nitrobenzene. The mechanism of some main product formation is described briefly.

Keywords

Phenyl Hydrogen Atom Product Formation Tetrachloride Isocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. KURUC, A. HLATKÁ, J. Radioanal. Nucl. Chem. 166 (1992) 251.Google Scholar
  2. 2.
    J. RAIS, P. SELUCKÝ, M. KYRŠ, J. Inorg. Chem., 38 (1976) 1376.Google Scholar
  3. 3.
    S. ČECHOVÁ, F. MACÁŠEK, J. Radioanal. Nucl. Chem., 149 (1991) 281.Google Scholar
  4. 4.
    R. ČECH, H. CHRENČÍKOVÁ, V. ŠIRÁNOVÁ, J. KURUC, F. MACÁŠEK, J. Radioanal. Nucl. Chem., 86 (1984) 337.Google Scholar
  5. 5.
    F. MACÁŠEK, R. ČECH, Radiat. Phys. Chem., 23 (1984) 473.Google Scholar
  6. 6.
    F. MACÁŠEK Radiat. Phys. Chem., 23 (1984) 481.Google Scholar
  7. 7.
    S. ČECHOVÁ, F. MACÁŠEK, R. ČECH, Radiat. Phys. Chem., 30 (1987) 119.Google Scholar
  8. 8.
    R. ČECH, P. RAČAY, F. MACÁŠEK, Radiat. Phys. Chem., 33 (1989) 109.Google Scholar
  9. 9.
    J. KURUC, A. HLATKÁ, R. ČECH, Radiat. Phys. Chem., 28 (1986) 467.Google Scholar
  10. 10.
    M. K. SAHOO, J. KURUC, A. ŠVEC, R. ČECH, M. HUTTA, J. Radioanal. Nucl. Chem., 163 (1992) 107.Google Scholar
  11. 11.
    N. B. COLTHUP, L. H. DALY, S. E. WIBERLY, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York-San Francisco-London, 1975, p. 239.Google Scholar
  12. 12.
    M. HORÁK, D. PAPOUŠEK Infračervná spektra a struktura molekul, Academia, Praha, 1976, p. 740 (in Czech).Google Scholar
  13. 13.
    J. KURUC, M. K. SAHOO, P. KURÁN, Chromatographia, 35 (1993) 574.Google Scholar
  14. 14.
    R. CIPOLLINI, Radiochem. Radioanal. Letters, 16 (1974) 193.Google Scholar
  15. 15.
    J. H. FENDLER, G. L. GASOWSKI, J. Org. Chem., 33 (1968) 1865.Google Scholar
  16. 16.
    G. V. BUXTON, Radiation Chemistry of the Liquid State: (1) Water and Homogeneous Aqueous Solutions, in: Radiation Chemistry: Principles and Applications, FARHATAZIZ and A. J. RODGERS (Eds), VCH Publishers, Inc., New York, 1987, p. 321.Google Scholar
  17. 17.
    K.-D. ASMUS, A. WIGGER, A. HENGLEIN, Ber. Bunsenges. Phys. Chem., 70 (1966) 862.Google Scholar
  18. 18.
    H. LOBEL, G. STEIN, J. WEISS, J. Chem. Soc. (1949) 2074.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • J. Kuruc
    • 1
  • M. K. Sahoo
    • 1
  1. 1.Department of Nuclear Chemistry, Faculty of Natural SciencesComenius UniversityBratislava(Slovak Republic)

Personalised recommendations